poj 2823 二分法+单调队列
#include<stdio.h>
#include<string.h>
#define N 1100000
int a[N];
int fmin[N],fmax[N];
int tmin[N],tmax[N];
int dicmax(int l,int r,int f[],int k) {
int mid;
while(l<=r) {
mid=(l+r)/2;
if(k>=f[mid])//
r=mid-1;
else
l=mid+1;
}
return l;//这里的r返回第一个大于k的数的位置-1
}
int dicmin(int l,int r,int f[],int k) {
int mid;
while(l<=r) {
mid=(l+r)/2;
if(k<=f[mid])
r=mid-1;
else
l=mid+1;
}
return l;//
}
int main() {
int n,k,i,j,front,end;
while(scanf("%d%d",&n,&k)!=EOF) {
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
front=end=1;
fmin[front]=a[1];
tmin[front]=1;
for(i=2;i<=k;i++) {
end=dicmin(front,end,fmin,a[i]);
// printf("%d\n",end);
fmin[end]=a[i];
tmin[end]=i;
}
printf("%d",fmin[front]);
for(i=k+1;i<=n;i++) {
end=dicmin(front,end,fmin,a[i]);
fmin[end]=a[i];
tmin[end]=i;
while(tmin[front]<i-k+1&&front<=end)
front++;
printf(" %d",fmin[front]);
}
printf("\n");
front=end=1;
fmax[1]=a[1];
tmax[1]=1;
for(i=2;i<=k;i++) {
end=dicmax(front,end,fmax,a[i]);
fmax[end]=a[i];
tmax[end]=i;
}
printf("%d",fmax[front]);
for(i=k+1;i<=n;i++) {
end=dicmax(front,end,fmax,a[i]);
fmax[end]=a[i];
tmax[end]=i;
while(tmax[front]<i-k+1&&front<=end)
front++;
printf(" %d",fmax[front]);
}
printf("\n");
}
return 0;}
poj 2823 二分法+单调队列的更多相关文章
- POJ 2823【单调队列】
题意: 给出序列,找出每个连续长度为k的子序列的最大值和最小值. 思路: 裸单调队列... 单调队列这东西用的真的非常局限,大概只能用到这种情景中== 简单说一下维护: 添加元素,为了保持单调性,排除 ...
- poj 1821 Fence 单调队列优化dp
/* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...
- POJ 3017 DP + 单调队列 + 堆
题意:给你一个长度为n的数列,你需要把这个数列分成几段,每段的和不超过m,问各段的最大值之和的最小值是多少? 思路:dp方程如下:设dp[i]为把前i个数分成合法的若干段最大值的最小值是多少.dp转移 ...
- POJ 1742 Coins ( 单调队列解法 )
id=1742" target="_blank">题目链接~~> 做题感悟:第一次做的时候用的二进制优化.可是没注意到是险过.so也没去看单调队列的解法. 解 ...
- Dividing the Path POJ - 2373(单调队列优化dp)
给出一个n长度的区间,然后有一些小区间只能被喷水一次,其他区间可以喷水多次,然后问你要把这个区间覆盖起来最小需要多少喷头,喷头的半径是[a, b]. 对于每个只能覆盖一次的区间,我们可以把他中间的部分 ...
- 刷题总结——Cut the Sequence(POJ 3017 dp+单调队列+set)
题目: Description Given an integer sequence { an } of length N, you are to cut the sequence into sever ...
- POJ 1821 Fence(单调队列优化DP)
题解 以前做过很多单调队列优化DP的题. 这个题有一点不同是对于有的状态可以转移,有的状态不能转移. 然后一堆边界和注意点.导致写起来就很难受. 然后状态也比较难定义. dp[i][j]代表前i个人涂 ...
- POJ 1742 (单调队列优化多重背包+混合背包)
(点击此处查看原题) 题意分析 给你n种不同价值的硬币,价值为val[1],val[2]...val[n],每种价值的硬币有num[1],num[2]...num[n]个,问使用这n种硬币可以凑齐[1 ...
- POJ 2823 Sliding Window + 单调队列
一.概念介绍 1. 双端队列 双端队列是一种线性表,是一种特殊的队列,遵守先进先出的原则.双端队列支持以下4种操作: (1) 从队首删除 (2) 从队尾删除 (3) 从队尾插入 (4) ...
随机推荐
- spring的依赖注入如何降低了耦合
依赖注入:程序运行过程中,如需另一个对象协作(调用它的方法.访问他的属性时),无须在代码中创建被调用者,而是依赖于外部容器的注入 看过一些比较好的回答 1.一个人(Java实例,调用者)需要一把斧子( ...
- ASP.NET MVC 生成验证码
using System.Web.Mvc; using System.Drawing; using System; using System.Drawing.Imaging; using Models ...
- CircuitBreaker design pattern---reference
It's common for software systems to make remote calls to software running in different processes, pr ...
- Windows Azure中文博客 Windows Azure入门教学系列 (一): 创建第一个WebRole程序
http://blogs.msdn.com/b/azchina/ 本文转自:http://blogs.msdn.com/b/azchina/archive/2010/02/09/windows-azu ...
- MySQL与MongoDB的操作对比
MySQL与MongoDB都是开源的常用数据库,但是MySQL是传统的关系型数据库,MongoDB则是非关系型数据库,也叫文档型数据库,是一种NoSQL的数据库.它们各有各的优点,关键是看用在什么地方 ...
- Microsoft SQL Server学习(三)
1.表:表示一个实体(客观存在的事物或抽象时间),可实现对实体的数据描述和数据操作. 2.表结构:二位平面(行.列) 3.数据类型: 类型名称 类型 整形 bit(只存储0.1) samllint i ...
- Linux 配置 nginx + php
为什么!!!我配过的服务器已经有5.6个了吧,为什么每一次配置都能要了我的老命??这次写清楚过程,以后再要被配服务器坑,我特么要砍人了. 提示:测试网站能否访问的时候,最好关掉浏览器的缓存功能或者勤清 ...
- (转)Hibernate框架基础——映射集合属性
http://blog.csdn.net/yerenyuan_pku/article/details/52745486 集合映射 集合属性大致有两种: 单纯的集合属性,如像List.Set或数组等集合 ...
- SQlite数据库框架:LitePal
常用的数据库框架Android的发展的速度是难以置信的,Android出来哪一年我还在小学上学很,还能很清楚的记得,那年一切,但是那个时候的我怎么可能也不会想到自己将来会要去做Android.Andr ...
- ThinkPHP---框架介绍
(1)什么是框架? ①框架是一堆包含了常量.方法和类等代码集合: ②半成品应用,只包含了项目开发时的底层架构,并不包含业务逻辑: ③包含一些设计模式,例如单例模式,工厂模式,AR(Active Rec ...