poj 2823 二分法+单调队列
#include<stdio.h>
#include<string.h>
#define N 1100000
int a[N];
int fmin[N],fmax[N];
int tmin[N],tmax[N];
int dicmax(int l,int r,int f[],int k) {
int mid;
while(l<=r) {
mid=(l+r)/2;
if(k>=f[mid])//
r=mid-1;
else
l=mid+1;
}
return l;//这里的r返回第一个大于k的数的位置-1
}
int dicmin(int l,int r,int f[],int k) {
int mid;
while(l<=r) {
mid=(l+r)/2;
if(k<=f[mid])
r=mid-1;
else
l=mid+1;
}
return l;//
}
int main() {
int n,k,i,j,front,end;
while(scanf("%d%d",&n,&k)!=EOF) {
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
front=end=1;
fmin[front]=a[1];
tmin[front]=1;
for(i=2;i<=k;i++) {
end=dicmin(front,end,fmin,a[i]);
// printf("%d\n",end);
fmin[end]=a[i];
tmin[end]=i;
}
printf("%d",fmin[front]);
for(i=k+1;i<=n;i++) {
end=dicmin(front,end,fmin,a[i]);
fmin[end]=a[i];
tmin[end]=i;
while(tmin[front]<i-k+1&&front<=end)
front++;
printf(" %d",fmin[front]);
}
printf("\n");
front=end=1;
fmax[1]=a[1];
tmax[1]=1;
for(i=2;i<=k;i++) {
end=dicmax(front,end,fmax,a[i]);
fmax[end]=a[i];
tmax[end]=i;
}
printf("%d",fmax[front]);
for(i=k+1;i<=n;i++) {
end=dicmax(front,end,fmax,a[i]);
fmax[end]=a[i];
tmax[end]=i;
while(tmax[front]<i-k+1&&front<=end)
front++;
printf(" %d",fmax[front]);
}
printf("\n");
}
return 0;}
poj 2823 二分法+单调队列的更多相关文章
- POJ 2823【单调队列】
题意: 给出序列,找出每个连续长度为k的子序列的最大值和最小值. 思路: 裸单调队列... 单调队列这东西用的真的非常局限,大概只能用到这种情景中== 简单说一下维护: 添加元素,为了保持单调性,排除 ...
- poj 1821 Fence 单调队列优化dp
/* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...
- POJ 3017 DP + 单调队列 + 堆
题意:给你一个长度为n的数列,你需要把这个数列分成几段,每段的和不超过m,问各段的最大值之和的最小值是多少? 思路:dp方程如下:设dp[i]为把前i个数分成合法的若干段最大值的最小值是多少.dp转移 ...
- POJ 1742 Coins ( 单调队列解法 )
id=1742" target="_blank">题目链接~~> 做题感悟:第一次做的时候用的二进制优化.可是没注意到是险过.so也没去看单调队列的解法. 解 ...
- Dividing the Path POJ - 2373(单调队列优化dp)
给出一个n长度的区间,然后有一些小区间只能被喷水一次,其他区间可以喷水多次,然后问你要把这个区间覆盖起来最小需要多少喷头,喷头的半径是[a, b]. 对于每个只能覆盖一次的区间,我们可以把他中间的部分 ...
- 刷题总结——Cut the Sequence(POJ 3017 dp+单调队列+set)
题目: Description Given an integer sequence { an } of length N, you are to cut the sequence into sever ...
- POJ 1821 Fence(单调队列优化DP)
题解 以前做过很多单调队列优化DP的题. 这个题有一点不同是对于有的状态可以转移,有的状态不能转移. 然后一堆边界和注意点.导致写起来就很难受. 然后状态也比较难定义. dp[i][j]代表前i个人涂 ...
- POJ 1742 (单调队列优化多重背包+混合背包)
(点击此处查看原题) 题意分析 给你n种不同价值的硬币,价值为val[1],val[2]...val[n],每种价值的硬币有num[1],num[2]...num[n]个,问使用这n种硬币可以凑齐[1 ...
- POJ 2823 Sliding Window + 单调队列
一.概念介绍 1. 双端队列 双端队列是一种线性表,是一种特殊的队列,遵守先进先出的原则.双端队列支持以下4种操作: (1) 从队首删除 (2) 从队尾删除 (3) 从队尾插入 (4) ...
随机推荐
- 10.19NOIP模拟赛(DAY2)
/* 正解O(n)尺取法orz 我写的二分答案.本来以为会被卡成暴力分...... 这个-'0'-48是我写的吗........我怎么不记得... */ #include<bits\stdc++ ...
- Wannafly挑战赛29A御坂美琴
传送门 这套题很有意思2333 蠢了--首先先判总共加起来等不等于\(n\),不是的话就不行 然后dfs记录\(n\)不断分下去能分成哪些数,用map记录一下,判断是否所有数都能被分出来就是了 //m ...
- layui 动态左树导航栏显示样式BUG规避
先看问题现象: 使用 layui 的左树功能,先在html页面添加左树功能引入 <ul class="layui-nav layui-nav-tree layui-nav-side&q ...
- 【js】再谈移动端的模态框实现
移动端模态框的机制因为与PC的模态框机制一直有所区别,一直是许多新人很容易踩坑的地方,最近笔者作为一条老咸鱼也踩进了一个新坑中,真是平日里代码读得太粗略,故而写上几笔,以儆效尤. 故事的起因是这样的, ...
- C#常量知识整理
整数常量 整数常量可以是十进制.八进制或十六进制的常量.前缀指定基数:0x 或 0X 表示十六进制,0 表示八进制,没有前缀则表示十进制. 整数常量也可以有后缀,可以是 U 和 L 的组合,其中,U ...
- 《从Paxos到ZooKeeper 分布式一致性原理与实践》阅读【Leader选举】
从3.4.0版本开始,zookeeper废弃了0.1.2这3种Leader选举算法,只保留了TCP版本的FastLeaderElection选举算法. 当ZooKeeper集群中的一台服务器出现以下两 ...
- Android requestWindowFeature(Window.FEATURE_NO_TITLE)无效解决方法
今天在<第一行代码>上学习做自定义标题栏,需要将系统自带的标题栏隐藏掉,使用自定义的标题栏,结果发现,requestWindowFeature(Window.FEATURE_NO_TITL ...
- Selenium学习第二天,了解Selenium工作模式与学习Selenium需要具备的知识与工具。
Selenium学习网站: 1.http://www.ltesting.net/ceshi/open/kygncsgj/selenium/2014/0408/207237.html——好像是对API的 ...
- Android基础TOP5_4:点击按钮更换样式,设置透明度
在res/drawable创建两个样式 点击前/点击后 round: <?xml version="1.0" encoding="utf-8"?> ...
- 后台接收不到postman发送的xml参数的解决办法
首先在body下复制需要传的xml: 然后点击url右边的Params,添加key和value.value和body下的xml是一样的: 最后点击send,后台就能接收到参数了.