#include<stdio.h>

#include<string.h>

#define N  1100000

int a[N];

int fmin[N],fmax[N];

int tmin[N],tmax[N];

int dicmax(int l,int r,int f[],int k) {

    int mid;

     while(l<=r) {

        mid=(l+r)/2;

        if(k>=f[mid])//

            r=mid-1;

        else

            l=mid+1;

     }

     return l;//这里的r返回第一个大于k的数的位置-1

}

int dicmin(int l,int r,int f[],int k) {

  int mid;

  while(l<=r) {

    mid=(l+r)/2;

    if(k<=f[mid])

        r=mid-1;

    else

        l=mid+1;

  }

  return l;//

}

int main() {

   int n,k,i,j,front,end;

   while(scanf("%d%d",&n,&k)!=EOF) {

     for(i=1;i<=n;i++)

        scanf("%d",&a[i]);

     front=end=1;

     fmin[front]=a[1];

     tmin[front]=1;

     for(i=2;i<=k;i++) {

        end=dicmin(front,end,fmin,a[i]);

     //   printf("%d\n",end);

        fmin[end]=a[i];

        tmin[end]=i;

     }

     printf("%d",fmin[front]);

     for(i=k+1;i<=n;i++) {

       end=dicmin(front,end,fmin,a[i]);

        fmin[end]=a[i];

        tmin[end]=i;

        while(tmin[front]<i-k+1&&front<=end)

            front++;

        printf(" %d",fmin[front]);

     }

     printf("\n");

     front=end=1;

     fmax[1]=a[1];

     tmax[1]=1;

     for(i=2;i<=k;i++) {

        end=dicmax(front,end,fmax,a[i]);

        fmax[end]=a[i];

        tmax[end]=i;

     }

      printf("%d",fmax[front]);

       for(i=k+1;i<=n;i++) {

        end=dicmax(front,end,fmax,a[i]);

        fmax[end]=a[i];

        tmax[end]=i;

        while(tmax[front]<i-k+1&&front<=end)

            front++;

        printf(" %d",fmax[front]);

     }

     printf("\n");

   }

return 0;}

poj 2823 二分法+单调队列的更多相关文章

  1. POJ 2823【单调队列】

    题意: 给出序列,找出每个连续长度为k的子序列的最大值和最小值. 思路: 裸单调队列... 单调队列这东西用的真的非常局限,大概只能用到这种情景中== 简单说一下维护: 添加元素,为了保持单调性,排除 ...

  2. poj 1821 Fence 单调队列优化dp

    /* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...

  3. POJ 3017 DP + 单调队列 + 堆

    题意:给你一个长度为n的数列,你需要把这个数列分成几段,每段的和不超过m,问各段的最大值之和的最小值是多少? 思路:dp方程如下:设dp[i]为把前i个数分成合法的若干段最大值的最小值是多少.dp转移 ...

  4. POJ 1742 Coins ( 单调队列解法 )

    id=1742" target="_blank">题目链接~~> 做题感悟:第一次做的时候用的二进制优化.可是没注意到是险过.so也没去看单调队列的解法. 解 ...

  5. Dividing the Path POJ - 2373(单调队列优化dp)

    给出一个n长度的区间,然后有一些小区间只能被喷水一次,其他区间可以喷水多次,然后问你要把这个区间覆盖起来最小需要多少喷头,喷头的半径是[a, b]. 对于每个只能覆盖一次的区间,我们可以把他中间的部分 ...

  6. 刷题总结——Cut the Sequence(POJ 3017 dp+单调队列+set)

    题目: Description Given an integer sequence { an } of length N, you are to cut the sequence into sever ...

  7. POJ 1821 Fence(单调队列优化DP)

    题解 以前做过很多单调队列优化DP的题. 这个题有一点不同是对于有的状态可以转移,有的状态不能转移. 然后一堆边界和注意点.导致写起来就很难受. 然后状态也比较难定义. dp[i][j]代表前i个人涂 ...

  8. POJ 1742 (单调队列优化多重背包+混合背包)

    (点击此处查看原题) 题意分析 给你n种不同价值的硬币,价值为val[1],val[2]...val[n],每种价值的硬币有num[1],num[2]...num[n]个,问使用这n种硬币可以凑齐[1 ...

  9. POJ 2823 Sliding Window + 单调队列

    一.概念介绍 1. 双端队列 双端队列是一种线性表,是一种特殊的队列,遵守先进先出的原则.双端队列支持以下4种操作: (1)   从队首删除 (2)   从队尾删除 (3)   从队尾插入 (4)   ...

随机推荐

  1. 清北考前刷题day1早安

    立方数(cubic) Time Limit:1000ms   Memory Limit:128MB 题目描述 LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数 ...

  2. Akka源码分析-Akka-Streams-GraphStage

    上一篇博客中我们介绍了ActorMaterializer的一小部分源码,其实分析的还是非常简单的,只是初窥了Materializer最基本的初始化过程及其涉及的基本概念.我们知道在materializ ...

  3. laravel生命周期和核心思想

    工欲善其事,必先利其器.在开发Xblog的过程中,稍微领悟了一点Laravel的思想.确实如此,这篇文章读完你可能并不能从无到有写出一个博客,但知道Laravel的核心概念之后,当你再次写起Larav ...

  4. 题解报告:hdu 1698 Just a Hook(线段树区间修改+lazy懒标记的运用)

    Problem Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing for m ...

  5. CentOS环境下下调整home和根分区大小

    项目建设方给提供了3台CentOS的服务器,连接进去之后发现磁盘空间很大,但是都放在了home目录下,所以需要调整一下. 1.查看磁盘使用情况 [root@CentOS ~]# df -h Files ...

  6. Github 文件选择性上传

    用过Github的人都知道.gitignore文件的存在,但是实际用起来还是有一些需要注意的地方,尤其是对于新手来说,稍不注意就会出错.   一.Github选择性忽略特定文件的方式 1.全局设置 一 ...

  7. 类函数:string、math

    类:系统内置的处理字符串类型的函数方法类. string是String的快捷方式.所包含的内容都是一样的. Int i=x.length;//获取一个字符串长度 字符串中,索引号从0开始 String ...

  8. NodeJs学习记录(五)初学阶段关于ejs和路由

    1.因为只是用了一点皮毛,所以使用起来感觉基本和jsp无异, 逻辑代码块使用  <%  if() {} else  %> , 输出参数值使用 <%=title  %>, 有一个 ...

  9. Python,报错NameError: name 'math' is not defined

    1 #-*- coding : utf-8 -*- 2 import math 3 4 def move(x, y, step, angle=0): 5 nx = x + step * math.co ...

  10. Ionic2/angularJs2中的静态类 PhotoLibrary 调用不上

    photoLibrary调用报错:No provider for PhotoLibrary: 在调用相册文件时有用到photolibrary,总有些莫名的报错,3月份的时候这个坑让我不知所措,现在写下 ...