\(\\\)

Description


一句话题意:

设 \(x=\sum_{d|n} C_n^d\),求 \(G^x\pmod {999911659}\) 。

从原题面大段语文中其实不难推出所求。

\(\\\)

Solution


以前一不敢碰..... 今天做做发现是个水题

显然问题在指数上,而不是整个式子。

暴力检验一下,发现模数为质数。根据费马小定理,\(a^k\equiv a^{k\pmod {p-1}}\pmod{p-1}\) 。

所以所求化为 \(\sum_{d|n}C_{n}^d\pmod{999911658}\) woc怕不是要EXCRT

后来发现这个模数很萎.....标准分解一下 \(999911659=2\times3\times4679\times35617\) 。

叫什么 square-free-number ,其实就是只为考个 \(CRT\) 强行凑了一个数罢了......

对四个质数分别用 \(Lucas\) 搞一下,然后 \(CRT\) 合并就好了。

其实最后还是被坑了一下,注意最外层快速幂的模数跟 CRT 合并的时候的 M 不同。

还要特判 \(a\ |\ p\) 的情况,因为这种情况下费马小定理不成立。

\(\\\)

Code


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define R register
#define N 50010
#define mo 999911658ll
using namespace std;
typedef long long ll; ll mod[5]={0,2,3,4679,35617},m[5],fac[N]; inline void init(ll p){
fac[0]=1;
for(R ll i=1;i<=p;++i) fac[i]=fac[i-1]*i%p;
} inline ll qpow(ll x,ll t,ll p){
ll res=1;
while(t){
if(t&1) (res*=x)%=p;
(x*=x)%=p; t>>=1;
}
return res;
} ll C(ll n,ll m,ll p){
if(m>n) return 0;
return fac[n]*qpow(fac[m],p-2,p)%p*qpow(fac[n-m],p-2,p)%p;
} ll lucas(ll n,ll m,ll p){
if(n<m) return 0;
if(!m||!n) return 1;
return C(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
} inline ll solve(ll n,ll p){
init(p);
ll t=sqrt(n),res=0;
for(R ll i=1;i<=t;++i)
if(n%i==0){
(res+=lucas(n,i,p))%=p;
if(n/i!=i) (res+=lucas(n,n/i,p))%=p;
}
return res;
} inline ll CRT(ll n){
ll res=0;
for(R ll i=1;i<=4;++i){
m[i]=mo/mod[i];
res=(res+m[i]*solve(n,mod[i])%mo*qpow(m[i],mod[i]-2,mod[i]))%mo;
}
return res;
} int main(){
ll n,g;
scanf("%lld%lld",&n,&g);
if(g%(mo+1)==0){puts("0");return 0;}
printf("%lld\n",qpow(g,CRT(n),mo+1));
return 0;
}

[ SDOI 2010 ] 古代猪文的更多相关文章

  1. 【数学/扩展欧几里得/Lucas定理】BZOJ 1951 :[Sdoi 2010]古代猪文

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  2. BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)

    数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...

  3. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  4. 1951: [Sdoi2010]古代猪文

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2171  Solved: 904[Submit][Status] ...

  5. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  6. 古代猪文:数论大集合:欧拉定理,exgcd,china,逆元,Lucas定理应用

    /* 古代猪文:Lucas定理+中国剩余定理 999911658=2*3*4679*35617 Lucas定理:(m,n)=(sp,tp)(r,q) %p 中国剩余定理:x=sum{si*Mi*ti} ...

  7. [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)

    [SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...

  8. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  9. BZOJ 1951 【SDOI2010】 古代猪文

    题目链接:古代猪文 好久没写博客了,这次就先写一篇吧…… 题面好鬼……概括起来就是:给出\(N,G(\leqslant 10^9)\),求:\[G^{\sum_{d|n}\binom{n}{d}} \ ...

随机推荐

  1. CodeChef Consecutive Snakes 三分(整数)

    题意 在年度阅兵中,所有的士兵蛇都在阅兵场集合了,但这些蛇的站位不对.整场阅兵必须能从主席台看清楚,所有蛇都应该站成一排.但这些士兵非常懒惰,你必须指挥士兵重新排队,使得所有人的移动距离之和最短. 形 ...

  2. 设计模式-(12)迭代器模式 (swift版)

    一,概念 迭代器模式(Iterator Pattern)是 Java 和 .Net 编程环境中非常常用的设计模式.这种模式用于顺序访问集合对象的元素,不需要知道集合对象的底层表示.迭代器模式属于行为型 ...

  3. 谈一谈以太坊虚拟机EVM的缺陷与不足

    首先,EVM的设计初衷是什么?它为什么被设计成目前我们看的样子呢?根据以太坊官方提供的设计原理说明,EVM的设计目标主要针对以下方面: 简单性(Simplicity) 确定性(Determinism) ...

  4. eclipse自动创建项目出错Cannot change version of project facet Dynamic Web Module to 2.3.

    Cannot change version of project facet Dynamic Web Module to 2.3. step1:修改properties step2:修改web.xml ...

  5. 五.OC基础--1.多态,2.类对象,3.点语法,4.@property&@synthesize,5.动态类型,内省(判断对象是否遵循特定的协议,以及是否可以响应特定的消息)

    五.OC基础--1.多态, 1. 多态概念,定义:多态就是某一类事物的多种形态: 表现形式: Animal *ani = [Dog new]; 多态条件:1.有继承关系 2.有方法的重写 2.多态代码 ...

  6. I.MX6 DNS 查看、修改方法

    /************************************************************************** * I.MX6 DNS 查看.修改方法 * 说明 ...

  7. Codeforces 633H. Fibonacci-ish II

    题目大意: 一个数列 q次询问 每次询问l r 将数列中l-r的位置排序去重后的数列成为b 输出 sigma b i * F i (其中F i为斐波那契数列中的第i项) 思路: 由于要去重 考虑权值线 ...

  8. BZOJ3282:Tree(TCL基础题)

    给定N个点以及每个点的权值,要你处理接下来的M个操作. 操作有4种.操作从0到3编号.点从1到N编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和. 保证x到y是联通的. ...

  9. 组件-实体-系统 Entiy-Compoent-System ECS架构整理

    继承体系的问题,为什么要用ECS 面向对象的问题 当一个新的类型需要多个老类型的不同功能的时候,不能很好的继承出来 游戏开发后期会有非常多的类,很难维护 游戏中子系统很多,它们对一个对象的关注点往往互 ...

  10. bzoj 1898: [Zjoi2005]Swamp 沼泽鳄鱼【dp+矩阵快速幂】

    注意到周期234的lcm只有12,也就是以12为周期,可以走的状态是一样的 所以先预处理出这12个状态的转移矩阵,乘起来,然后矩阵快速幂优化转移k/12次,然后剩下的次数暴力转移即可 #include ...