Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible. 
2. Ax = b has exactly one solution for every n × 1 matrix b. 
3. Ax = b is consistent for every n × 1 matrix b. 
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

InputOn the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved. 
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.OutputPer testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.Sample Input

2
4 0
3 2
1 2
1 3

Sample Output

4
2 题意: 
  给定一张有向图,问最少添加几条边使得有向图成为一个强连通图。 题解:
  缩完点的图是一个DAG,变成强联通就是,一个点至少一个出度一个入度
  所以只需要输出缩完点后的图入度和出度最大值既可。
   这个真的很好想,自己瞎比比搞了半天,浪费了许多时间。
  真的菜。
  

  想到后怒删代码,修改就过了。

 #include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#define N 20007
#define M 50007
using namespace std; int n,m,tim,sc,totalin,totalout;
int top,dfn[N],low[N],stack[N],ins[N],bel[N],chu[N],ru[N],boo[N];
int cnt,head[N],Next[M],rea[M];
struct Node
{
int ru,chu;
void init()
{
ru=chu=;
}
}zhi[N]; void add(int u,int v)
{
Next[++cnt]=head[u];
head[u]=cnt;
rea[cnt]=v;
}
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;
stack[++top]=u,ins[u]=true;
for (int i=head[u];i!=-;i=Next[i])
{
int v=rea[i];
if (!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (ins[v]) low[u]=min(low[u],dfn[v]);
}
if (low[u]==dfn[u])
{
sc++;int x=-;
while(x!=u)
{
x=stack[top--];
ins[x]=;
bel[x]=sc;
}
}
}
void rebuild()
{
for (int u=;u<=n;u++)
{
for (int i=head[u];i!=-;i=Next[i])
{
int v=rea[i];
if (bel[v]!=bel[u])
{
chu[bel[u]]++;
ru[bel[v]]++;
}
}
}
for (int i=;i<=sc;i++)
{
if (!chu[i]) totalout++;
if (!ru[i]) totalin++;
}
}
int main()
{
int T;scanf("%d",&T);
while (T--)
{
cnt=sc=,top=,totalin=totalout=;
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(boo,,sizeof(boo));
memset(chu,,sizeof(chu));
memset(ru,,sizeof(ru));
scanf("%d%d",&n,&m);
for (int i=,x,y;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
}
for (int i=;i<=n;i++)
if (!dfn[i]) Tarjan(i);
rebuild();
int ans=max(totalout,totalin);
if (ans==) ans=;
printf("%d\n",ans);
}
}

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)的更多相关文章

  1. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  2. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  3. HDU 2767:Proving Equivalences(强连通)

    题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...

  4. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  5. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  6. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  7. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. HDU 2767.Proving Equivalences-强连通图(有向图)+缩点

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  9. hdu - 2667 Proving Equivalences(强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=2767 求至少添加多少条边才能变成强连通分量.统计入度为0的点和出度为0的点,取最大值即可. #include & ...

随机推荐

  1. vue_resource 使用说明

    前几天用vue-resource调用接口,用post方式给后端,发现后端php接受不到数据,这好奇怪,最后发现提交给后端的时候 需要加一个参数 就是:emulateJSON : true 这句话的意思 ...

  2. Asp.net MVC + Vue.js

    @{ Layout = null; } <!DOCTYPE html><html> <head> <meta charset="UTF-8" ...

  3. Netty实现WebSocket

    package com.qmtt.server; import javax.annotation.PostConstruct; import javax.annotation.PreDestroy; ...

  4. rabbitmq的知识点

    rabbitmq,分为集群和主从2种. 主从式与集群式的速度差10倍. 每个rabittmq组需要3台机器. 集群式,稳定性高,主从式,速度快. 可以做任务分配,单点锁(二进制树实现). 只有当消息和 ...

  5. 通过HA方式操作HDFS

    之前操作hdfs的时候,都是固定namenode的地址,然后去操作.这个时候就必须判断namenode的状态为active还是standby,比较繁琐,如果集群使用了HA的形式,就很方便了 直接上代码 ...

  6. RFS自动化测试(一)

    RFS 即 Robot Framework + Selenium RFS 的安装 1. python https://www.python.org/ RF框架是基于python的,所以要先安装有pyt ...

  7. python-seaborn绘图

    https://zhuanlan.zhihu.com/p/27435863 Seaborn(sns)官方文档学习笔记系列

  8. 关于JDBC访问存储过程的问题

    最近开发一个应用,需要调用一个入参为List的存储过程. 存储过程为: proc_test(p1 OUT Number, p2 IN Number, p3 IN TAB_CUSTOMER); 这个Li ...

  9. 如何开发 Laravel 扩展包并发布到 Composer

    如何开发 Laravel 扩展包并发布到 Composer  发布于 2019-01-22 cxp1539  1074 Vie   开发扩展包 我们来做一个根据第一个字符或者汉字生成头像的larave ...

  10. strict说明