Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible. 
2. Ax = b has exactly one solution for every n × 1 matrix b. 
3. Ax = b is consistent for every n × 1 matrix b. 
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

InputOn the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved. 
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.OutputPer testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.Sample Input

2
4 0
3 2
1 2
1 3

Sample Output

4
2 题意: 
  给定一张有向图,问最少添加几条边使得有向图成为一个强连通图。 题解:
  缩完点的图是一个DAG,变成强联通就是,一个点至少一个出度一个入度
  所以只需要输出缩完点后的图入度和出度最大值既可。
   这个真的很好想,自己瞎比比搞了半天,浪费了许多时间。
  真的菜。
  

  想到后怒删代码,修改就过了。

 #include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#define N 20007
#define M 50007
using namespace std; int n,m,tim,sc,totalin,totalout;
int top,dfn[N],low[N],stack[N],ins[N],bel[N],chu[N],ru[N],boo[N];
int cnt,head[N],Next[M],rea[M];
struct Node
{
int ru,chu;
void init()
{
ru=chu=;
}
}zhi[N]; void add(int u,int v)
{
Next[++cnt]=head[u];
head[u]=cnt;
rea[cnt]=v;
}
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;
stack[++top]=u,ins[u]=true;
for (int i=head[u];i!=-;i=Next[i])
{
int v=rea[i];
if (!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (ins[v]) low[u]=min(low[u],dfn[v]);
}
if (low[u]==dfn[u])
{
sc++;int x=-;
while(x!=u)
{
x=stack[top--];
ins[x]=;
bel[x]=sc;
}
}
}
void rebuild()
{
for (int u=;u<=n;u++)
{
for (int i=head[u];i!=-;i=Next[i])
{
int v=rea[i];
if (bel[v]!=bel[u])
{
chu[bel[u]]++;
ru[bel[v]]++;
}
}
}
for (int i=;i<=sc;i++)
{
if (!chu[i]) totalout++;
if (!ru[i]) totalin++;
}
}
int main()
{
int T;scanf("%d",&T);
while (T--)
{
cnt=sc=,top=,totalin=totalout=;
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(boo,,sizeof(boo));
memset(chu,,sizeof(chu));
memset(ru,,sizeof(ru));
scanf("%d%d",&n,&m);
for (int i=,x,y;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
}
for (int i=;i<=n;i++)
if (!dfn[i]) Tarjan(i);
rebuild();
int ans=max(totalout,totalin);
if (ans==) ans=;
printf("%d\n",ans);
}
}

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)的更多相关文章

  1. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  2. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  3. HDU 2767:Proving Equivalences(强连通)

    题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...

  4. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  5. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  6. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  7. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. HDU 2767.Proving Equivalences-强连通图(有向图)+缩点

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  9. hdu - 2667 Proving Equivalences(强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=2767 求至少添加多少条边才能变成强连通分量.统计入度为0的点和出度为0的点,取最大值即可. #include & ...

随机推荐

  1. ionic之自定义图片

    一个好的app,必须都有很好的ui设计师来设计界面,增强客户的体验,表现自己本身公司的特色,但是,在ionic中有些是无法用img标签直接引入图片,只能通过设定的css之后引入css. 页面: < ...

  2. wp跳转到评价界面代码

    wp跳转到评价界面代码(仅适用于wp8.0) MarketplaceReviewTask marketplaceReviewTask = new MarketplaceReviewTask(); ma ...

  3. NIO服务端主要创建过程

    NIO服务端主要创建过程:   步骤一:打开ServerSocketChannel,用于监听客户端的连接,它是所有客户端连接的副管道,示例代码如下:      ServerSocketChannel ...

  4. html制作简单框架网页二 实现自己的影音驿站 操作步骤及源文件下载 (可播放mp4、avi、mpg、asx、swf各种文件的视频播放代码)

    新增视频播放功能如下图: 左侧网页left.html代码如下: <meta charset="utf-8"> <body style="backgrou ...

  5. ["1", "2", "3"].map(parseInt)

    为什么["1", "2", "3"].map(parseInt) 为 1,NaN,NaN; parseInt() parseInt() 函数 ...

  6. ES6学习笔记(11)----Proxy

    参考书<ECMAScript 6入门>http://es6.ruanyifeng.com/ Proxy1.概述    Proxy可以用来修改对象的默认操作    let obj = {na ...

  7. jsonp对付同源策略

    当 协议不同或者域名/ip不同或者端口号不同 ,  都不算是同源 这时候 源生的ajax 就不能进行数据请求了 JSONP json with padding 在平时的开发中也发现了  ,当我们请求  ...

  8. vue项目中常用的一些公共方法

    //校验手机号码 export function isSpecialPhone(num) { return /^1[2,3,4,5,7,8]\d{9}$/.test(num) } //校验中英文姓名 ...

  9. 洛谷 P1361 小猫爬山

    题目描述 WD和LHX饲养了N只小猫,这天,小猫们要去爬山.经历了千辛万苦,小猫们终于爬上了山顶,但是疲倦的它们再也不想徒步走下山了. WD和LHX只好花钱让它们坐索道下山.索道上的缆车最大承重量为W ...

  10. Two-Phase Commit (2PC)

    两阶段提交模式像极了比赛发令:“预备,开始!”