【POJ3280/洛谷2890】[Usaco2007 Open Gold]Cheapest Palindrome(动态规划)
题目:
POJ3280
洛谷2980
分析:
首先,考虑只可以加字的情况
设\(s[i]\)表示第\(i\)个字符,\(add[i]\)表示加上一个字母\(i\)的花费,\(dp[i][j]\)表示把区间\(i\)~\(j\)变成回文串的花费,那么
1.如果\(s[i]=s[j]\),那么只需要把\((i+1)\)~\((j-1)\)变成回文串就可以了,
即
\]
2.如果\(s[i] \neq s[j]\),那么可以先把\(i\)$(j-1)$变成回文串,然后在前面加一个$s[j]$,和$i$\(j\)串尾的\(s[j]\)对应上,
即
\]
同理,也可以先把\((i+1)\)$j$变成回文串,然后在后面加一个$s[i]$,和$i$\(j\)串首的\(s[i]\)对应上,
即
\]
在这两种方法中取花费较小的一个。
边界条件:当\(i=j\),只有一个字符的字符串显然是回文串
然后考虑还可以减字的情况
设\(del[i]\)表示减去一个字母i的花费,其余同上。
显然,\(s[i]=s[j]\)的情况是不受影响的。
我们来讨论\(s[i] \neq s[j]\)的情况:
我们也可以先把\(i\)$(j-1)$变成回文串,然后删掉$i$\(j\)串尾的\(s[j]\),这样它就变成回文串了
即
\]
发现什么了?这只是把上面的第二个状态转移方程中\(add[s[j]]\)变成了\(del[s[j]]\)!
同理,也有
\]
总结一下,当\(s[i] \neq s[j]\)时,一共有如下四种转移,取最小值即可:
\]
\]
\]
\]
其实到这里已经可以写这道题了,但是可以发现一个有趣的事情
如果设\(c[i]=min(add[i],del[i])\),那么……
第一个和第三个方程合作一下得到:
\]
=
第二个和第四个方程合作一下得到:
\]
=
所以这题的可以加减字符就是个幌子,取每个字符加字和减字的较小值作为该字符的花费就可以啊2333
代码:
(注意一下字符的读法,一定要防止读进来' '或者'\n'之类奇怪的东西)
#include<cstdio>
#include<algorithm>
using namespace std;
int dp[2010][2010],n,m,cost[26];
const int INF=0x3f3f3f3f;
char s[2010];
int main(void)
{
scanf("%d%d%s",&n,&m,s);
for(int i=0;i<n;i++)
{
char a;
int b,c;
do{a=getchar();}while(!('a'<=a&&a<='z'));
scanf("%d%d",&b,&c);
cost[a-'a']=min(b,c);
}
for(int len=2;len<=m;len++)
for(int i=0;i<=m-len;i++)
{
int j=i+len-1;
dp[i][j]=INF;
if(s[i]==s[j])
dp[i][j]=dp[i+1][j-1];
else
dp[i][j]=min(dp[i+1][j]+cost[s[i]-'a'],dp[i][j-1]+cost[s[j]-'a']);
}
printf("%d",dp[0][m-1]);
return 0;
}
【POJ3280/洛谷2890】[Usaco2007 Open Gold]Cheapest Palindrome(动态规划)的更多相关文章
- NOIP2017提高组Day1T3 逛公园 洛谷P3953 Tarjan 强连通缩点 SPFA 动态规划 最短路 拓扑序
原文链接https://www.cnblogs.com/zhouzhendong/p/9258043.html 题目传送门 - 洛谷P3953 题目传送门 - Vijos P2030 题意 给定一个有 ...
- 洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)
洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f ...
- 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)
洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...
- 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...
- 洛谷 P2015 二叉苹果树 && caioj1107 树形动态规划(TreeDP)2:二叉苹果树
这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有 ...
- 洛谷P1217回文质数-Prime Palindrome回溯
P1217 [USACO1.5]回文质数 Prime Palindromes 题意:给定一个区间,输出其中的回文质数: 学习了洛谷大佬的回溯写法,感觉自己写回溯的能力不是很强: #include &l ...
- 动态规划 洛谷P4017 最大食物链计数——图上动态规划 拓扑排序
洛谷P4017 最大食物链计数 这是洛谷一题普及/提高-的题目,也是我第一次做的一题 图上动态规划/拓扑排序 ,我认为这题是很好的学习拓扑排序的题目. 在这题中,我学到了几个名词,入度,出度,及没有环 ...
- 洛谷 2890 [USACO07OPEN]便宜的回文Cheapest Palindrome
传送门 一道最简单的区间dp,然而我还是抄了题解. //Twenty #include<algorithm> #include<iostream> #include<cs ...
- Bzoj1692 洛谷P2870 [Usaco2007 Dec]队列变换
Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1570 Solved: 656 Description FJ打算带他的N(1 <= N <= ...
随机推荐
- C语言之自定义__DATE__与__TIME__
/******************************************************************* * > File Name: 05-ymd.c * &g ...
- BZOJ 4976 [Lydsy1708月赛]宝石镶嵌
[题解] 我们设总共有m个二进制位出现过1,那么如果n-k≥m,显然所有的1都可以出现,那么答案就是把所有的数或起来. 如果n-k<m,那么因为k不超过100,ai不超过1e5,所以n不超过11 ...
- 《阿里巴巴Java开发手册》更新为《Java开发手册》
新版一览:华山版<Java开发手册> <阿里巴巴Java开发手册>始于阿里内部规约,在全球Java开发者共同努力下,已成为业界普遍遵循的开发规范,涵盖编程规约.异常日志.单元测 ...
- 从“菜鸟”码农到“资深”架构师,我到底经历了什么?--------http://baijiahao.baidu.com/s?id=1585813883835208757&wfr=spider&for=pc
http://baijiahao.baidu.com/s?id=1585813883835208757&wfr=spider&for=pc
- @requestbody---接受前端传json对象并绑定javabean
@requestbody---接受前端传json对象并绑定javabean----https://blog.csdn.net/ljxbbss/article/details/74452326 最近代码 ...
- 九度oj 1179 阶乘
题目1179:阶乘 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6010 解决:1756 题目描述: 输入n,求y1=1!+3!+...m!(m是小于等于n的最大奇数)y2=2!+4!+ ...
- 清北学堂模拟赛d1t2 火柴棒 (stick)
题目描述众所周知的是,火柴棒可以拼成各种各样的数字.具体可以看下图: 通过2根火柴棒可以拼出数字“1”,通过5根火柴棒可以拼出数字“2”,以此类推. 现在LYK拥有k根火柴棒,它想将这k根火柴棒恰好用 ...
- [K/3Cloud] 如何在k3Cloud主页实现自定义页面的开发
过自定义页签动态添加一些内容,比如网页链接.图片等. 如果是动态的增加链接,可以参考一下代码,然后在ButtonClick事件里面对链接进行处理. public override void After ...
- CodeForces 370C
这道题其实是挺简单的.首先很容易发现最多人用的颜色的人数如果大于n/2,就肯定不能让全部人都成功戴上两只不同颜色的手套.反过来想,如果这个人数小于等于n/2又如何呢?的确,这就能让全部人都能戴上两只不 ...
- A - 不容易系列之(3)―― LELE的RPG难题 简单递推
人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即"可乐"),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研 ...