#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h> #define PI (3.1415926f)
#define RND ((float)rand() / (RAND_MAX + 1))
#define X_DIM 30 //float domx[X_DIM][2] =
//{
// { -1.0f, 2.0f}, { -1.0f, 2.0f}
//}; float domx[] = { -100.0f, 100.0f}; const int S = ; // 细菌个数
float bacterium[S][X_DIM]; // 细菌
const int Nc = ; // 趋化的次数
float bacterafitness[S][Nc]; // 适应度
const int Ns = ; // 趋化操作中单向运动的最大步数4
const int Nre = ; // 复制次数
const int Ned = ; // 驱散次数
const float Ped = 0.25f; // 驱散概率
const float Ci = 1.0f; // 步长 float gbest;
float gx[X_DIM]; const float d_at = 0.05f; // 吸引剂的数量
const float w_at = 0.05f; // 吸引剂的释放速度
const float h_re = 0.05f; // 排斥剂的数量
const float w_re = 0.05f; // 排斥剂的释放速度 float get_y1( float x[X_DIM] )
{
return - ( x[] * sin( * PI * x[] ) - x[] * sin( * PI * x[] + PI + ) );
} float get_y( float x[X_DIM] )
{
register int i;
register float sum; sum = 0.0f;
for ( i = ; i < X_DIM; i ++ )
{
sum -= x[i] * x[i];
}
return sum;
} float fitness( float y )
{
return y;
} float get_jcc( int idx )
{
register int i, j;
register float a, allsum, sum, sum1, sum2; allsum = 0.0f;
for ( i = ; i < S; i ++ )
{
sum = 0.0f;
for ( j = ; j < X_DIM; j ++ )
{
a = bacterium[i][j] - bacterium[idx][j];
sum += a * a;
} sum1 = -w_at * sum;
sum1 = -d_at * exp( sum1 ); sum2 = -w_re * sum;
sum2 = h_re * exp( sum2 ); allsum += sum1 + sum2;
} return allsum;
} void init_single_bacterium( float x[X_DIM] )
{
register int i; for ( i = ; i < X_DIM; i ++ )
{
x[i] = domx[] + RND * ( domx[] - domx[] );
}
} void init_bacterium()
{
register int i, j; for ( i = ; i < S; i ++ )
{
for ( j = ; j < X_DIM; j ++ )
{
bacterium[i][j] = domx[] + RND * ( domx[] - domx[] );
}
}
} void get_delta( float delta[X_DIM] )
{
register int i;
register float tmp; tmp = 0.0f;
for ( i = ; i < X_DIM; i ++ )
{
delta[i] = ( RND - 0.5f ) * ; tmp += delta[i] * delta[i];
} tmp = sqrt( tmp ); for ( i = ; i < X_DIM; i ++ )
{
delta[i] /= tmp;
}
} int main()
{
register int i, j, k, l, m, n;
float f, f1, y, flast, tmpfit;
float delta[X_DIM];
float tmpbactera[X_DIM];
float bfsum[S];
int Sr; srand( ( unsigned int )time( NULL ) ); gbest = -10000000000.0f;
Sr = S / ;
init_bacterium(); for ( l = ; l < Ned; l ++ )
{
for ( k = ; k < Nre; k ++ )
{
for ( j = ; j < Nc; j ++ )
{
for ( i = ; i < S; i ++ )
{
y = get_y( bacterium[i] ); if ( y > gbest )
{
gbest = y;
memcpy( gx, bacterium[i], sizeof( gx ) );
} f = fitness( y );
f += get_jcc( i ); flast = f; get_delta( delta ); for ( n = ; n < X_DIM; n ++ )
{
tmpbactera[n] = Ci * delta[n] + bacterium[i][n];
} for ( m = ; m < Ns; m ++ )
{
f1 = fitness( get_y( tmpbactera ) );
if ( f1 > flast )
{
flast = f1;
for ( n = ; n < X_DIM; n ++ )
{
tmpbactera[n] += Ci * delta[n];
}
}
else
{
break;
}
} memcpy( bacterium[i], tmpbactera, sizeof( bacterium[] ) );
bacterafitness[i][j] = flast;
} printf( "[%02d,%02d,%02d]\tgbest=%f\t(%f,%f)\n", l, k, j, gbest, gx[], gx[] );
} for ( i = ; i < S; i ++ )
{
bfsum[i] = 0.0f;
for ( j = ; j < Nc; j ++ )
{
bfsum[i] += bacterafitness[i][j];
}
} for ( n = ; n < Sr; n ++ )
{
i = n;
tmpfit = bfsum[n];
for ( j = n + ; j < S; j ++ )
{
if ( bfsum[j] > tmpfit )
{
tmpfit = bfsum[j];
i = j;
}
} if ( i != n )
{
memcpy( tmpbactera, bacterium[n], sizeof( tmpbactera ) );
memcpy( bacterium[n], bacterium[i], sizeof( bacterium[] ) );
memcpy( bacterium[i], tmpbactera, sizeof( bacterium[] ) );
}
} for ( i = ; i < Sr; i ++ )
{
memcpy( bacterium[Sr + i], bacterium[i], sizeof( bacterium[] ) );
}
} for ( i = ; i < S; i ++ )
{
if ( RND < Ped )
{
init_single_bacterium( bacterium[i] );
}
}
} return ;
}

BFOA的更多相关文章

  1. 从Random Walk谈到Bacterial foraging optimization algorithm(BFOA),再谈到Ramdom Walk Graph Segmentation图分割算法

    1. 从细菌的趋化性谈起 0x1:物质化学浓度梯度 类似于概率分布中概率密度的概念.在溶液中存在不同的浓度区域. 如放一颗糖在水盆里,糖慢慢溶于水,糖附近的水含糖量比远离糖的水含糖量要高,也就是糖附近 ...

  2. 图学习【参考资料2】-知识补充与node2vec代码注解

    本项目参考: https://aistudio.baidu.com/aistudio/projectdetail/5012408?contributionType=1 *一.正题篇:DeepWalk. ...

随机推荐

  1. ios ionic 装平台 笔记

    1.安装cnpm : npm install -g cnpm --registry=https://registry.npm.taobao.org 2.An error occurred when I ...

  2. 怎么让frameset出现整体滚动条

    a.html<!DOCTYPE html> <html> <head> <title></title> </head> < ...

  3. 特征选择--->卡方选择器

    特征选择(Feature Selection)指的是在特征向量中选择出那些“优秀”的特征,组成新的.更“精简”的特征向量的过程.它在高维数据分析中十分常用,可以剔除掉“冗余”和“无关”的特征,提升学习 ...

  4. IDEA Spark Streaming 操作(套接字流)-----make socket数据源

    import java.io.PrintWriter import java.net.ServerSocket import scala.io.Source object DStream_makeSo ...

  5. Linux进程状态解析

    引言 Linux是一个多用户,多任务的系统,可以同时运行多个用户的多个程序,就必然会产生很多的进程,而每个进程会有不同的状态.  在下文将对进程的R.S.D.T.Z.X 六种状态做个说明. PROCE ...

  6. php settype()和gettype()

    gettype()是获得变量的类型,settype()函数用来配置或转换变量类型.成功返回 true 值,其它情形返回 false 值.参数 var 为原来的变量名,参数 type 为下列的类型之一: ...

  7. CentOS 7.0 firewall防火墙关闭firewall作为防火墙,这里改为iptables防火墙

    CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙步骤: 1.先检查是否安装了: iptables service iptables status 2.安装ip ...

  8. 51nod1446 Kirchhoff矩阵+Gauss消元+容斥+折半DFS

    思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using ...

  9. flask中路由系统

    flask中的路由我们并不陌生,从一开始到现在都一直在应用 @app.route("/",methods=["GET","POST"]) 1 ...

  10. Maven+Docker,发布到Registry

    1.配置Pom.xml <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEnc ...