The length of parametric curve (x + sin x, cos x)
问题引入
一个硬币(圆)的周长上有一个点,将硬币在一条线上无滑动地滚动。假设那个点开始时在最上面,滚了半圈到了最下面,求这个点相对于地面的运动轨迹的长度。
或者说,再简单点,自行车总骑过吧。假如你在骑自行车,自行车的轮胎最上缘有一个小石子,然后向前骑行,石子滚到了最下缘,求这个石子相对于地面的运动轨迹的长度。
初步计算
首先设半径为\(r\),旋转的角度为\(\theta\)。
易得出位移为
y=r\cos x
\]
可以在几何画板中画出对应的参数曲线

易得曲线的取值范围应当是小于其所在矩形的半周长,大于其对角线长度的,也就是\([\sqrt{4r^2+\pi^2},2r+\pi r]\)。
问问AI
不妨设\(r=1\),把这个问题化简为The length of parametric curve (x + sin x, cos x)。

那么我们就得到了问题的近似解:\(S=4\).
欸?是个整数?
更进一步
这条曲线在数学中有很久远的研究,它就是大名鼎鼎的摆线Cycloid。
早在17世纪,人们就发现了摆线的几个性质:
- 它的长度等于旋转圆直径的 \(4\) 倍。尤为令人感兴趣的是,它的长度是一个不依赖于\(\pi\)的有理数。
- 在弧线下的面积,是旋转圆面积的三倍。
- 圆上描出摆线的那个点,具有不同的速度(事实上,在特定的地方它甚至是静止的)。
- 当弹子从一个摆线形状的容器的不同点放开时,它们会同时到达底部。
说句闲话,\(S=3πr^2\) 最初的证明是,找个均匀木板,切个圆,切个摆线,然后一看质量比 \(1:3\)。好像是伽利略干的
——\(\rm\color{red}{WYXkk}\)
而我们发现的就是其第一条性质了。
为了方便地用数学证明它,我们再次定义一下摆线。
设圆的半径为\(r=1\),旋转角为\(t\),那么参数曲线定义为
y=1-\cos t
\]
计算曲线长度
L&=\int_0^{2\pi}\sqrt{\mathrm{d}x^2+\mathrm{d}y^2}\\
&=\int_0^{2\pi}\sqrt{(1-\cos t)^2+\sin^2 t}\ \mathrm{d}t\\
&=\int_0^{2\pi}\sqrt{2-2\cos t}\ \mathrm{d}t\\
&=\int_0^{2\pi}2\mid \sin\frac t2\mid\ \mathrm{d}t\\
&=2\cdot\int_0^{2\pi}\sin\frac t2\times2\times\mathrm{d}\frac t2\\
&=4\cdot\int_0^\pi\sin t\ \mathrm{d}t\\
&=4
\end{align}
\]
计算面积
S&=\int_0^{2\pi}y\ \mathrm{d}x\\
&=\int_0^{2\pi}(1-\cos t)^2\ \mathrm{d}t\\
&=\int_0^{2\pi}(1-2\cos t+\cos^2t)\ \mathrm{d}t\\
&=2\pi-0+\int_0^{2\pi}\cos^2t\ \mathrm{d}t\\
&=2\pi+\int_0^{2\pi}\sin^2t\ \mathrm{d}t\\
&=2\pi+\frac12\int_0^{2\pi}\sin^2t\ \mathrm{d}t+\frac12\int_0^{2\pi}\cos^2t\ \mathrm{d}t\\
&=2\pi+\frac12\int_0^{2\pi}\sin^2 t+\cos^2 t\\
&=3\pi
\end{align}
\]
EOF
The length of parametric curve (x + sin x, cos x)的更多相关文章
- [再寄小读者之数学篇](2014-11-19 $\sin(x+y)=\sin x\cos y+\cos x\sin y$)
$$\bex \sin(x+y)=\sin x\cos y+\cos x\sin y. \eex$$ Ref. [Proof Without Words: Sine Sum Identity, The ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- 单变量微积分笔记20——三角替换1(sin和cos)
sin和cos的常用公式 基本公式: 半角公式: 微分公式: 积分公式: 三角替换 示例1 根据微分公式,cosxdx = dsinx 示例2 示例3 半角公式 示例1 示例2 解法1: 解法2: 综 ...
- 数学中的Sin和Cos是什么意思?(转)
数学中的Sin和Cos是什么意思? 作者:admin 分类:生活随笔 发表于 2012年03月21日 16:48 问:数学中的Sin和Cos是什么意思? 答:sin, cos, tan 都是三角函数, ...
- 带 sin, cos 的线段树 - 牛客
链接:https://www.nowcoder.com/acm/contest/160/D来源:牛客网 题目描述给出一个长度为n的整数序列a1,a2,...,an,进行m次操作,操作分为两类.操作1: ...
- [Pytorch框架] 3.3 通过Sin预测Cos
文章目录 3.3 通过Sin预测Cos 3.3 通过Sin预测Cos %matplotlib inline import torch import torch.nn as nn from torch. ...
- 正弦 sin 余弦 cos
正弦 以下概念需掌握 直角,锐角 sinA = 对边 / 斜边 性質 奇偶性 奇 定義域 (-∞,∞) 到達域 [-1,1] 周期 2π 在數學中,正弦是一種週期函數,是三角函数的一種.它的定义域是整 ...
- 利用Xilinx中的ROM构造查找表来计算sin和cos的方法探讨
1.使用matlab制作.coe文件 查找表的构造 构造256点的正余弦表 exp(-j*2*pi*(0:255)/256),分别得到 cos和sin的查找表 matlab代码: 求sin fid = ...
- 正割、余割、正弦、余弦、正切、余切之间的关系的公式 sec、csc与sin、cos、tan、cot之间的各种公式
1.倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 2.商数关系 tanα=sinα/cosα cotα=cosα/sinα 3.平方关系 sinα²+cosα ...
- Python中的sin和cos函数
1 第一次使用math.sin()和math.cos(),可是发现结果不对,比如Math.sin(90)=0.893996663600,奇怪? 2 3 一查,原来sin(x) \n\n Ret ...
随机推荐
- MySql 主从(备)部署 | 冷备份
前言 MySQL 主从复制(Master-Slave Replication)是一种常见的数据库架构设计,用于提高数据可用性.实现读写分离以及支持备份策略.冷备份是指在数据库关闭状态下进行的数据备份方 ...
- 程序员必看 Linux 常用命令(重要)
文件操作命令 find find 用于在指定目录下查找文件或子目录,如果不指定查找目录,则在当前目录下查找 命令格式:find path -option [-print] [ -exec/-ok co ...
- k8s Error: failed to prepare subPath for volumeMount "custom-logo" of container "grafana"
前言 使用 k8s 挂载卷文件时,使用了 hostPath,type: File volumeMounts: - mountPath: /usr/share/grafana/public/img/gr ...
- React.memo 解决函数组件重复渲染
为什么会存在重复渲染? react 在 v16.8 版本引入了全新的 api,叫做 React Hooks,它的使用与以往基于 class component 的组件用法非常的不一样,不再是基于类,而 ...
- Go是怎么解决包依赖管理问题的?
我们先来了解一下 Go 构建模式的演化过程,弄清楚 Go 核心开发团队为什么要引入 Go module 构建模式. Go 构建模式时怎么演化的? Go 程序由 Go 包组合而成的,Go 程序的构建过程 ...
- 想查看某些网站源码,结果发现网站F12被禁用,怎么解决?
当我们访问某些网站的时候,发现网站是禁用了F12和右键功能的.比如想保存网页上的一些文字或图片等, 新手不知道怎么破除. 下面分享给大家几种方法:1.打开网页后,鼠标点进浏览器地址栏,再按F12键,就 ...
- 使用自制离线数据跑通ElasticFusion
使用自制离线数据跑通ElasticFusion 实验环境及设备 实验环境: Ubuntu22.04 RTX3060 实验设备: 小米13(Android) Realsense D455 一句话总结就是 ...
- Ruby+Selenium+testunit web自动化demo
1.安装对应库 使用RubyMine新建项目打开终端安装对应库 gem install selenium-webdriver gem install test-unit 如果安装不成功,请切换到国内源 ...
- Quill自定义工具栏
<div id="toolbar"> <button class="ql-bold"></button> <butto ...
- macOS终端修改DNS
以WiFi为例 networksetup -listallnetworkservices networksetup -setdnsservers Wi-Fi 8.8.8.8 networksetup ...