The length of parametric curve (x + sin x, cos x)
问题引入
一个硬币(圆)的周长上有一个点,将硬币在一条线上无滑动地滚动。假设那个点开始时在最上面,滚了半圈到了最下面,求这个点相对于地面的运动轨迹的长度。
或者说,再简单点,自行车总骑过吧。假如你在骑自行车,自行车的轮胎最上缘有一个小石子,然后向前骑行,石子滚到了最下缘,求这个石子相对于地面的运动轨迹的长度。
初步计算
首先设半径为\(r\),旋转的角度为\(\theta\)。
易得出位移为
y=r\cos x
\]
可以在几何画板中画出对应的参数曲线
易得曲线的取值范围应当是小于其所在矩形的半周长,大于其对角线长度的,也就是\([\sqrt{4r^2+\pi^2},2r+\pi r]\)。
问问AI
不妨设\(r=1\),把这个问题化简为The length of parametric curve (x + sin x, cos x)
。
那么我们就得到了问题的近似解:\(S=4\).
欸?是个整数?
更进一步
这条曲线在数学中有很久远的研究,它就是大名鼎鼎的摆线Cycloid。
早在17世纪,人们就发现了摆线的几个性质:
- 它的长度等于旋转圆直径的 \(4\) 倍。尤为令人感兴趣的是,它的长度是一个不依赖于\(\pi\)的有理数。
- 在弧线下的面积,是旋转圆面积的三倍。
- 圆上描出摆线的那个点,具有不同的速度(事实上,在特定的地方它甚至是静止的)。
- 当弹子从一个摆线形状的容器的不同点放开时,它们会同时到达底部。
说句闲话,\(S=3πr^2\) 最初的证明是,找个均匀木板,切个圆,切个摆线,然后一看质量比 \(1:3\)。好像是伽利略干的
——\(\rm\color{red}{WYXkk}\)
而我们发现的就是其第一条性质了。
为了方便地用数学证明它,我们再次定义一下摆线。
设圆的半径为\(r=1\),旋转角为\(t\),那么参数曲线定义为
y=1-\cos t
\]
计算曲线长度
L&=\int_0^{2\pi}\sqrt{\mathrm{d}x^2+\mathrm{d}y^2}\\
&=\int_0^{2\pi}\sqrt{(1-\cos t)^2+\sin^2 t}\ \mathrm{d}t\\
&=\int_0^{2\pi}\sqrt{2-2\cos t}\ \mathrm{d}t\\
&=\int_0^{2\pi}2\mid \sin\frac t2\mid\ \mathrm{d}t\\
&=2\cdot\int_0^{2\pi}\sin\frac t2\times2\times\mathrm{d}\frac t2\\
&=4\cdot\int_0^\pi\sin t\ \mathrm{d}t\\
&=4
\end{align}
\]
计算面积
S&=\int_0^{2\pi}y\ \mathrm{d}x\\
&=\int_0^{2\pi}(1-\cos t)^2\ \mathrm{d}t\\
&=\int_0^{2\pi}(1-2\cos t+\cos^2t)\ \mathrm{d}t\\
&=2\pi-0+\int_0^{2\pi}\cos^2t\ \mathrm{d}t\\
&=2\pi+\int_0^{2\pi}\sin^2t\ \mathrm{d}t\\
&=2\pi+\frac12\int_0^{2\pi}\sin^2t\ \mathrm{d}t+\frac12\int_0^{2\pi}\cos^2t\ \mathrm{d}t\\
&=2\pi+\frac12\int_0^{2\pi}\sin^2 t+\cos^2 t\\
&=3\pi
\end{align}
\]
EOF
The length of parametric curve (x + sin x, cos x)的更多相关文章
- [再寄小读者之数学篇](2014-11-19 $\sin(x+y)=\sin x\cos y+\cos x\sin y$)
$$\bex \sin(x+y)=\sin x\cos y+\cos x\sin y. \eex$$ Ref. [Proof Without Words: Sine Sum Identity, The ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- 单变量微积分笔记20——三角替换1(sin和cos)
sin和cos的常用公式 基本公式: 半角公式: 微分公式: 积分公式: 三角替换 示例1 根据微分公式,cosxdx = dsinx 示例2 示例3 半角公式 示例1 示例2 解法1: 解法2: 综 ...
- 数学中的Sin和Cos是什么意思?(转)
数学中的Sin和Cos是什么意思? 作者:admin 分类:生活随笔 发表于 2012年03月21日 16:48 问:数学中的Sin和Cos是什么意思? 答:sin, cos, tan 都是三角函数, ...
- 带 sin, cos 的线段树 - 牛客
链接:https://www.nowcoder.com/acm/contest/160/D来源:牛客网 题目描述给出一个长度为n的整数序列a1,a2,...,an,进行m次操作,操作分为两类.操作1: ...
- [Pytorch框架] 3.3 通过Sin预测Cos
文章目录 3.3 通过Sin预测Cos 3.3 通过Sin预测Cos %matplotlib inline import torch import torch.nn as nn from torch. ...
- 正弦 sin 余弦 cos
正弦 以下概念需掌握 直角,锐角 sinA = 对边 / 斜边 性質 奇偶性 奇 定義域 (-∞,∞) 到達域 [-1,1] 周期 2π 在數學中,正弦是一種週期函數,是三角函数的一種.它的定义域是整 ...
- 利用Xilinx中的ROM构造查找表来计算sin和cos的方法探讨
1.使用matlab制作.coe文件 查找表的构造 构造256点的正余弦表 exp(-j*2*pi*(0:255)/256),分别得到 cos和sin的查找表 matlab代码: 求sin fid = ...
- 正割、余割、正弦、余弦、正切、余切之间的关系的公式 sec、csc与sin、cos、tan、cot之间的各种公式
1.倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 2.商数关系 tanα=sinα/cosα cotα=cosα/sinα 3.平方关系 sinα²+cosα ...
- Python中的sin和cos函数
1 第一次使用math.sin()和math.cos(),可是发现结果不对,比如Math.sin(90)=0.893996663600,奇怪? 2 3 一查,原来sin(x) \n\n Ret ...
随机推荐
- cypress 在 typescript 项目中报错找不到 'tslib'
原文链接:https://blog.jijian.link/2020-08-11/cypress-typescript-cannot-find-module-tslib/ cypress 在 type ...
- arco-design-pro-vite项目配置参考
参考地址 配置源码地址:https://github.com/arco-design/arco-design-pro-vue/blob/main/arco-design-pro-vite/ 按钮组件 ...
- 什么是RESTful 或 GraphQL?
RESTful 与 GraphQL 深度解析 在前端的开发过程中,相信 everyone 对 Get.POST 等请求方式都很熟悉,那么这些请求是归于哪种架构或者设计风格可能又不是很熟.现在在这简单的 ...
- .NET & JWT
使用 JWT 库 JWT,a JWT(JSON Web Token) implementation for .NET 该库支持生成和解析JSON Web Token 你可以直接通过Nuget获取,也可 ...
- 关于TFDMemtable的使用场景【1】提供快速查询
建立内存表非常easy.看代码: begin createZipTable; FillZipCodeData; end: procdure CreateZipCodeTable; var Defs, ...
- 痞子衡嵌入式:恩智浦i.MX RT1xxx上特色外设XBAR那些事(1)- 初识
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MX RT1xxx系列上的XBAR外设. 得益于 Arm Cortex-M 内核的普及,现如今 MCU 厂商遍地开花,只要能取 ...
- nodejs读写yaml
nodejs读写yaml npm install -g js-yaml // read.js const fs = require('fs'); const yaml = require('js-ya ...
- 《数组》--DAY2--快慢指针法
1.什么是双指针? 双指针,指的是在遍历对象的过程中,不是普通的使用单个指针进行访问,而是使用两个相同方向(快慢指针)或者相反方向(对撞指针)的指针进行扫描,从而达到相应的目的. 2.快慢指针 2.1 ...
- Python科学计算系列6—积分
1.定积分 例1:求下列函数的定积分 代码如下: from sympy import * x = symbols('x') f = integrate(exp(-x), (x, 0, oo)) pri ...
- 微信支付功能的设计实现与关键实践(UniApp+Java)全代码
感觉本篇对你有帮助可以关注一下我的微信公众号(深入浅出谈java),会不定期更新知识和面试资料.技巧!!! 温馨提醒:阅读时可打开导航栏 概述 在移动互联网时代,支付功能已成为应用开发的核心能力之一. ...