前言

如果你的工作中没有用到微积分,毫无疑问,你的工作是简单而枯燥的。

0 limit

Say there is a function \(f(x) = x\).

\(x \rightarrow a\) : We can use this to \(denote\) that \(x\) is approching to \(a\). Yes, it's just an action will never be ended and also will never really equal to a.

(eg. \(a = 0\) then \(x\) will be 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001 \(...\) 0.0000000000000000000000000000000000001 \(...\) 0.00000000000000000000000000000000000000000000000000000001 \(...\) \(x\) can go and go with this pattern never stop.)

Someone says I konw what you want, it is \(limit\). \(Limit\) see this pattern and gives a number \(0\).

\(x\) is running non-stop, and \(limit\) gives you the answer.

so \(\lim _{x \rightarrow a} f(x)\) is already an answer( number). Then we can use \(=\) to denote it equal to some number.

That is

\[\lim _{x \rightarrow a} f(x)=L
\]

limit of \(f(x)\) as \(x \rightarrow a\).

1 导数

对于微积分的描述,总是以 路程(S)-时间(t) 速度(v)-时间(t) 图像的引入开始。因为牛顿发明微积分就是为了解决物理问题!从微分求导开始,抵达积分为终止点。

导数可以看作是图像 某一段 的平均变化率,对应 平均速度。\({\Delta t}\)是一个确定的数字 eg.${\Delta t}= 0.1 = end -start $

\[\frac{\Delta s(t)}{\Delta t} = \frac{ s(t + \Delta t) - s(t)}{\Delta t} = \frac{ s(start + end - start) - s(start)}{end -start } = \frac{ s( end ) - s(start)}{end -start }
\]

\(\lim_{ \Delta t \rightarrow 0}\), 表示这一段的长度无限小(approch) and finnaly need to Limit it。图像的这一段很小, 有多小呢?要多小有多小,比原子还小,比任何我们可以想象出来的距离还小! 就像是一个点。但是永远不会缩一个点。

\[\lim_{ \Delta t \rightarrow 0}\frac{\Delta s(t)}{\Delta t}= lim_{ \Delta t \rightarrow 0} \frac{ s(t + \Delta t) - s(t)}{\Delta t}
\]
\[\lim_{ \Delta t \rightarrow 0}\frac{\Delta s(t)}{\Delta t} : =\frac{ds(t)}{dt} =\frac{s(t + dt) - s(t)}{dt}
\]

业界有个不成文的规矩,喜欢用\(\frac{ds(t)}{dt}\)这种简化版本来表示正常的导数定义,毫无疑问,这缺少了许多信息。

不过面对任何数学问题,有一个大杀器 All you need is just a Definition. 去翻翻他们的定义吧。

We can use \(dt\) to denote this process, first it just (small number) and limit in the context like $ \frac{ s(t + \Delta t) - s(t)}{\Delta t} $.

也就是说

\[dt := \text{ 1. We treat it as a normal number } \Delta t \text{ and process it in the context.}
\]
\[\text{2. For the answer which from 1, running with } \Delta t \rightarrow 0.
\]
\[\text{3. Finnaly Limit it.}
\]

需要注意的是 \(s = s(t)\), \(s\) 的值随着 \(t\) 来变化, t 被称为独立(independet)变量, s 被称为非独立(dependent)变量.

用 \(ds(t)\) 来表示他们的差。非常重要的一点是 \(ds(t)\) 依赖于 \(dt\),哪怕是在趋近的过程中,他们也是同步的变化。

\[ds(t) = s(t + dt) - s(t)
\]

事实是这样的,虽然 \(ds\) \(dt\) 都很小,但是他们比值的结果并不小。

eg.

\[s(t)=t^2
\]
\[\frac{\Delta s(t)}{\Delta t} = \frac{ s(t + \Delta t) - s(t)}{\Delta t}=2t + \Delta t
\]
\[\lim_{ \Delta t \rightarrow 0}\frac{\Delta s(t)}{\Delta t}=\frac{ds(t)}{dt} =\frac{s(t + dt) - s(t)}{dt}=2t
\]

(Informal ) 某一 路程(S)-时间(t) (函数)的图像中。由于对于上式的计算化简(导数公式的来源),对于路程函数s(t)的任意一时间 t, 我们总能找到与之对应的 速度v(t).

\[\frac{ds(t)}{dt} =\frac{s(t + dt) - s(t)}{dt} = v(t)
\]

导数并不难,下面就是积分了。以及导数和积分的关系。

1.1 二维情况



在邻域内,可以认为是线性的,无论是x方向还是y方向。在(x,y)处,dz是0, 因为没有变化。因为分子是quantom1, 斜率可以认为与(dZx, dZy)相关。对于任意一个方向,差异为(dZx * cosA + dZy * cosB) = (dZx, dZy)dot (cosA, cosB) 所以方向与 (dZx, dZy)相同的方向为差异值最大的方向,也就是梯度的方向。

2 积分

求积分就是求面积。对于速度图像 速度(v)-时间(t), 要想求其下的面积可以用固定间隔 \(\Delta t\) 将其分成小长条。这里我们分成3块。

\[v(1)\Delta t + v(2)\Delta t + v(3)\Delta t = \sum_{t=1}^{3} v(t) \Delta t
\]

这个时候是可以手工计算出来的。 但是误差会比较大。

我们缩短间隔,变成长度趋于零的 \(dt\)。由于 \(dt\) 间隔无限小,我们可以划分出无限多的小长条。并且将他们加起来。\(\int\) 表示求和。

\[\int_{start}^{end} v(t)dt
\]

但是怎么算呢?这么多东西不是手工可以加起来的。我们可以仔细看看上面的式子,并对其做出变换。

\[\int v(t)dt=\int \frac{ds(t)}{dt} dt= \int \frac{s(t + dt) - s(t)}{dt} dt = \int s(t + dt) - s(t)
\]

最终等于无数个小间隔于 路程(S)-时间(t) 图像中的函数值s(t)之差的和。

\[s(t_{end}) - s(t_{end} - dt) + s(t_{end} - dt) - s(t_{end} - 2dt) + ..... - s(t_{start})
\]
\[s(t_{end} + dt) - s(t_{start}) = s(t_{end}) - s(t_{start})
\]

所以我们可以把待求积分的函数看作是一个导函数 v(t), 无法直接求出无数项相加转而去寻找其原函数s(t)在这一段的差值。积分的表示是一种无限小的极限想法,而计算则需要与导数相连

注:

2022.2.28日,由麦克斯韦方程组引发对于微积分的再次探究。

3 Continuity with Open set

\(\varepsilon\)-Neighborhood(an open set)

Let \(a\in\mathbb{R}\) and \(\varepsilon>0.\) The \(\varepsilon\)-neighborhood at \(a\) is the set

\[\begin{gathered}
B_{\varepsilon}(a)=\left(a-\varepsilon,a+\varepsilon\right)
=\left\{x\in\mathbb{R}:|x-a|<\varepsilon\right\}.
\end{gathered}
\]

Inverse Image

Let \(f:X\to Y\) be a function. Let \(U\subset Y.\) Then the \(inverse\) \(image\) of \(U\), denoted $f^{- 1}( U) , $is the set

\[f^{-1}(U)=\{x\in X\mid f(x)\in U\}.
\]

Epsilon-delta definition of continuity

\[\forall\epsilon>0 \; \exists\delta>0 \; \forall x \in D : |x-x_0|<\delta=>|f(x)-f(x_0)|<\epsilon
\]

MATH 1150: Mathematical Reasoning: Definition: Subset

A is a subset of B, (denoted \(A \subseteq B\)), if every element of A is also an element of B.

\[\text{If } x \in A \text{ then } x \in B
\]

Continuous Functions via Open Neighborhoods

\[|x-x_0|<\delta := \; x \in B_{\delta}(x_0)
\]
\[|f(x)-f(x_0)|<\epsilon := f(x) \in B_{\varepsilon}(f(x_0)) = x \in f^{-1}(B_{\varepsilon}(f(x_0)))
\]
\[\forall\epsilon>0 \; \exists\delta>0 \; \forall x \in D : x \in B_{\delta}(x_0) => x \in f^{-1}(B_{\varepsilon}(f(x_0)))
\]
\[\forall\epsilon>0 \; \exists\delta>0 \; \forall x \in D : x \in B_{\delta}(x_0) \subseteq x \in f^{-1}(B_{\varepsilon}(f(x_0)))
\]

X Refference

  1. Epsilon-delta_definition_of_continuity

    https://de.m.wikibooks.org/wiki/Serlo:_EN:_Epsilon-delta_definition_of_continuity#:~:text=Among the sequence criterion%2C the epsilon-delta criterion is,cause arbitrarily small changes of the function value.

  2. Gerbert Strong MIT calculus

  3. Difference Between Inverse Functions and Inverse Images

    https://people.clas.ufl.edu/groisser/files/inverse_images.pdf

    另一种Open Set的拓扑学集合连续的定义需要用到inverse_images.

  4. https://www.youtube.com/watch?v=LISvIcPwSDA&list=PLL0ATV5XYF8BWP1JYgTkF-EIxAoFLSUrP&index=28&ab_channel=MatthewSalomone

后记:本篇博文中英文混杂,不过希望大家理解,最好的数学资料来自于英文课本,所以。

微积分 Calculus的更多相关文章

  1. PDF分享:国外优秀数学教材选评

    <国外优秀数学教材选评>推荐书目下载 具体内容请查看原内容: http://www.library.fudan.edu.cn/wjzx/list/373-1-20.htm 或者http:/ ...

  2. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归

    Lecture2   Linear regression with one variable  单变量线性回归 2.1 模型表示 Model Representation 2.1.1  线性回归 Li ...

  3. 学习的矩阵微积分The matrix calculus you need for deep learning

    学习的矩阵微积分The matrix calculus you need for deep learning https://explained.ai/matrix-calculus/index.ht ...

  4. 【Calculus 微积分の一些个人理解】

    微积分 微积分(Calculus)是高等数学中研究函数的微分(Differentiation).积分(Integration)以及有关概念和应用的数学分支.它是数学的一个基础学科.内容主要包括极限.微 ...

  5. 离散外微积分(DEC:Discrete Exterior Calculus)基础

    原文链接 “若人们不相信数学简单,只因为他们未意识到生命之复杂.”——Johnvon Neumann DEC主要讨论离散情况下的外积分,它在计算机领域有重要用途.我们知道,使用计算机来处理几何图形的时 ...

  6. 《University Calculus》-chape5-积分法-微积分基本定理

    定积分中值定理: 积分自身的定义是简单的,但是在教学过程中人们往往记得的只是它的计算方法,在引入积分的概念的时候,往往就将其与计算方法紧密的捆绑在一起,实际上,在积分简单的定义之下,微积分基本定理告诉 ...

  7. 【Math for ML】向量微积分(Vector Calculus)

    I. 向量梯度 假设有一个映射函数为\(f:R^n→R^m\)和一个向量\(x=[x_1,...,x_n]^T∈R^n\),那么对应的函数值的向量为\(f(x)=[f_1(x),...,f_m(x)] ...

  8. <<Vector Calculus>>笔记

    现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...

  9. 带你领会 线性代数 微积分的本质 3blue1brown 动画效果帅出天际

    前段时间在 哔哩哔哩 上偶然发现了 3blue1brown 精美的动画,配上生动的讲解,非常适合帮助建立数学的形象思维 其中两大系列,非常值得反复观看: 线性代数的本质(Essence of line ...

  10. 5.4Python数据处理篇之Sympy系列(四)---微积分

    目录 目录 前言 (一)求导数-diff() 1.一阶求导-diff() 2.多阶求导-diff() 3.求偏导数-diff() (二)求积分-integrate() (三)求极限-limit() ( ...

随机推荐

  1. 运行openai的gym代码报错提示import pyglet,安装后依然报错:ImportError: sys.meta_path is None, Python is likely shutting down

    运行代码: import gym def cartpole(): environment = gym.make('CartPole-v1') environment.reset() for _ in ...

  2. cuda的slient模式下的安装

    实验室的师弟要搞cuda编译,不会安装cuda,其实这个主要原因还是服务器上是不允许个人随意安装软件的,尤其是nvidia的那些东西,很容易把整个服务器搞崩掉,虽然实验室的服务器集群我是唯一的一个管理 ...

  3. 根据baselines库修改的运行输入参数的解析代码

    如题: def arg_parser(): """ Create an empty argparse.ArgumentParser. """ ...

  4. 图片热区。vue3+ts和vue3+js写法(js没写完数据,功能完善)

    废话不多说,上代码 vue3+ts <!-- 热区组件 --> <template> <el-dialog v-model="dialog_visible&qu ...

  5. 无缝融入,即刻智能[一]:Dify-LLM大模型平台,零编码集成嵌入第三方系统,42K+星标见证专属智能方案[含ollama部署]

    无缝融入,即刻智能[一]:Dify-LLM大模型平台,零编码集成嵌入第三方系统,42K+星标见证专属智能方案 1.Dify 简介 1.1 功能情况 Dify,一款引领未来的开源大语言模型(LLM)应用 ...

  6. bat 随笔

    bat 获取文件名 %%~nxi bat 变量去除空字符 BAT批处理中的字符串处理详解(字符串截取)

  7. 一文讲清楚static关键字

    static能修饰的地方 静态变量 静态变量: 又称为类变量,也就是说这个变量属于类的,类所有的实例都共享静态变量,可以直接通过类名来访问它:静态变量在内存中只存在一份. 实例变量: 每创建一个实例就 ...

  8. 记录_玩客云v1.0大坑!!!

    刷机 短接后刷入uboot固件, 制作U盘镜像启动会出现莫名其妙的内存写入失败!!!!!!!!!!! 但是这并没坏 拆机 , 短接刷armbian v5.67  内核 3.10, 这个版本刷完后什么特 ...

  9. LaTeX 编译 acmart 文档报错:hyperref must be loaded before hyperxmp.

    在编译一篇从 arXiv 下载的文档时遇到如下错误: Package hyperxmp Error: hyperref must be loaded before hyperxmp. 根据 GitHu ...

  10. LaTeX 插入矢量图

    首先将矢量图保存为 PDF 格式. 使用 pdfcrop 工具裁剪 PDF 页面空白: pdfcrop <input.pdf> [output.pdf] 在 .tex 文件中使用 grap ...