前言

如果你的工作中没有用到微积分,毫无疑问,你的工作是简单而枯燥的。

0 limit

Say there is a function \(f(x) = x\).

\(x \rightarrow a\) : We can use this to \(denote\) that \(x\) is approching to \(a\). Yes, it's just an action will never be ended and also will never really equal to a.

(eg. \(a = 0\) then \(x\) will be 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001 \(...\) 0.0000000000000000000000000000000000001 \(...\) 0.00000000000000000000000000000000000000000000000000000001 \(...\) \(x\) can go and go with this pattern never stop.)

Someone says I konw what you want, it is \(limit\). \(Limit\) see this pattern and gives a number \(0\).

\(x\) is running non-stop, and \(limit\) gives you the answer.

so \(\lim _{x \rightarrow a} f(x)\) is already an answer( number). Then we can use \(=\) to denote it equal to some number.

That is

\[\lim _{x \rightarrow a} f(x)=L
\]

limit of \(f(x)\) as \(x \rightarrow a\).

1 导数

对于微积分的描述,总是以 路程(S)-时间(t) 速度(v)-时间(t) 图像的引入开始。因为牛顿发明微积分就是为了解决物理问题!从微分求导开始,抵达积分为终止点。

导数可以看作是图像 某一段 的平均变化率,对应 平均速度。\({\Delta t}\)是一个确定的数字 eg.${\Delta t}= 0.1 = end -start $

\[\frac{\Delta s(t)}{\Delta t} = \frac{ s(t + \Delta t) - s(t)}{\Delta t} = \frac{ s(start + end - start) - s(start)}{end -start } = \frac{ s( end ) - s(start)}{end -start }
\]

\(\lim_{ \Delta t \rightarrow 0}\), 表示这一段的长度无限小(approch) and finnaly need to Limit it。图像的这一段很小, 有多小呢?要多小有多小,比原子还小,比任何我们可以想象出来的距离还小! 就像是一个点。但是永远不会缩一个点。

\[\lim_{ \Delta t \rightarrow 0}\frac{\Delta s(t)}{\Delta t}= lim_{ \Delta t \rightarrow 0} \frac{ s(t + \Delta t) - s(t)}{\Delta t}
\]
\[\lim_{ \Delta t \rightarrow 0}\frac{\Delta s(t)}{\Delta t} : =\frac{ds(t)}{dt} =\frac{s(t + dt) - s(t)}{dt}
\]

业界有个不成文的规矩,喜欢用\(\frac{ds(t)}{dt}\)这种简化版本来表示正常的导数定义,毫无疑问,这缺少了许多信息。

不过面对任何数学问题,有一个大杀器 All you need is just a Definition. 去翻翻他们的定义吧。

We can use \(dt\) to denote this process, first it just (small number) and limit in the context like $ \frac{ s(t + \Delta t) - s(t)}{\Delta t} $.

也就是说

\[dt := \text{ 1. We treat it as a normal number } \Delta t \text{ and process it in the context.}
\]
\[\text{2. For the answer which from 1, running with } \Delta t \rightarrow 0.
\]
\[\text{3. Finnaly Limit it.}
\]

需要注意的是 \(s = s(t)\), \(s\) 的值随着 \(t\) 来变化, t 被称为独立(independet)变量, s 被称为非独立(dependent)变量.

用 \(ds(t)\) 来表示他们的差。非常重要的一点是 \(ds(t)\) 依赖于 \(dt\),哪怕是在趋近的过程中,他们也是同步的变化。

\[ds(t) = s(t + dt) - s(t)
\]

事实是这样的,虽然 \(ds\) \(dt\) 都很小,但是他们比值的结果并不小。

eg.

\[s(t)=t^2
\]
\[\frac{\Delta s(t)}{\Delta t} = \frac{ s(t + \Delta t) - s(t)}{\Delta t}=2t + \Delta t
\]
\[\lim_{ \Delta t \rightarrow 0}\frac{\Delta s(t)}{\Delta t}=\frac{ds(t)}{dt} =\frac{s(t + dt) - s(t)}{dt}=2t
\]

(Informal ) 某一 路程(S)-时间(t) (函数)的图像中。由于对于上式的计算化简(导数公式的来源),对于路程函数s(t)的任意一时间 t, 我们总能找到与之对应的 速度v(t).

\[\frac{ds(t)}{dt} =\frac{s(t + dt) - s(t)}{dt} = v(t)
\]

导数并不难,下面就是积分了。以及导数和积分的关系。

1.1 二维情况



在邻域内,可以认为是线性的,无论是x方向还是y方向。在(x,y)处,dz是0, 因为没有变化。因为分子是quantom1, 斜率可以认为与(dZx, dZy)相关。对于任意一个方向,差异为(dZx * cosA + dZy * cosB) = (dZx, dZy)dot (cosA, cosB) 所以方向与 (dZx, dZy)相同的方向为差异值最大的方向,也就是梯度的方向。

2 积分

求积分就是求面积。对于速度图像 速度(v)-时间(t), 要想求其下的面积可以用固定间隔 \(\Delta t\) 将其分成小长条。这里我们分成3块。

\[v(1)\Delta t + v(2)\Delta t + v(3)\Delta t = \sum_{t=1}^{3} v(t) \Delta t
\]

这个时候是可以手工计算出来的。 但是误差会比较大。

我们缩短间隔,变成长度趋于零的 \(dt\)。由于 \(dt\) 间隔无限小,我们可以划分出无限多的小长条。并且将他们加起来。\(\int\) 表示求和。

\[\int_{start}^{end} v(t)dt
\]

但是怎么算呢?这么多东西不是手工可以加起来的。我们可以仔细看看上面的式子,并对其做出变换。

\[\int v(t)dt=\int \frac{ds(t)}{dt} dt= \int \frac{s(t + dt) - s(t)}{dt} dt = \int s(t + dt) - s(t)
\]

最终等于无数个小间隔于 路程(S)-时间(t) 图像中的函数值s(t)之差的和。

\[s(t_{end}) - s(t_{end} - dt) + s(t_{end} - dt) - s(t_{end} - 2dt) + ..... - s(t_{start})
\]
\[s(t_{end} + dt) - s(t_{start}) = s(t_{end}) - s(t_{start})
\]

所以我们可以把待求积分的函数看作是一个导函数 v(t), 无法直接求出无数项相加转而去寻找其原函数s(t)在这一段的差值。积分的表示是一种无限小的极限想法,而计算则需要与导数相连

注:

2022.2.28日,由麦克斯韦方程组引发对于微积分的再次探究。

3 Continuity with Open set

\(\varepsilon\)-Neighborhood(an open set)

Let \(a\in\mathbb{R}\) and \(\varepsilon>0.\) The \(\varepsilon\)-neighborhood at \(a\) is the set

\[\begin{gathered}
B_{\varepsilon}(a)=\left(a-\varepsilon,a+\varepsilon\right)
=\left\{x\in\mathbb{R}:|x-a|<\varepsilon\right\}.
\end{gathered}
\]

Inverse Image

Let \(f:X\to Y\) be a function. Let \(U\subset Y.\) Then the \(inverse\) \(image\) of \(U\), denoted $f^{- 1}( U) , $is the set

\[f^{-1}(U)=\{x\in X\mid f(x)\in U\}.
\]

Epsilon-delta definition of continuity

\[\forall\epsilon>0 \; \exists\delta>0 \; \forall x \in D : |x-x_0|<\delta=>|f(x)-f(x_0)|<\epsilon
\]

MATH 1150: Mathematical Reasoning: Definition: Subset

A is a subset of B, (denoted \(A \subseteq B\)), if every element of A is also an element of B.

\[\text{If } x \in A \text{ then } x \in B
\]

Continuous Functions via Open Neighborhoods

\[|x-x_0|<\delta := \; x \in B_{\delta}(x_0)
\]
\[|f(x)-f(x_0)|<\epsilon := f(x) \in B_{\varepsilon}(f(x_0)) = x \in f^{-1}(B_{\varepsilon}(f(x_0)))
\]
\[\forall\epsilon>0 \; \exists\delta>0 \; \forall x \in D : x \in B_{\delta}(x_0) => x \in f^{-1}(B_{\varepsilon}(f(x_0)))
\]
\[\forall\epsilon>0 \; \exists\delta>0 \; \forall x \in D : x \in B_{\delta}(x_0) \subseteq x \in f^{-1}(B_{\varepsilon}(f(x_0)))
\]

X Refference

  1. Epsilon-delta_definition_of_continuity

    https://de.m.wikibooks.org/wiki/Serlo:_EN:_Epsilon-delta_definition_of_continuity#:~:text=Among the sequence criterion%2C the epsilon-delta criterion is,cause arbitrarily small changes of the function value.

  2. Gerbert Strong MIT calculus

  3. Difference Between Inverse Functions and Inverse Images

    https://people.clas.ufl.edu/groisser/files/inverse_images.pdf

    另一种Open Set的拓扑学集合连续的定义需要用到inverse_images.

  4. https://www.youtube.com/watch?v=LISvIcPwSDA&list=PLL0ATV5XYF8BWP1JYgTkF-EIxAoFLSUrP&index=28&ab_channel=MatthewSalomone

后记:本篇博文中英文混杂,不过希望大家理解,最好的数学资料来自于英文课本,所以。

微积分 Calculus的更多相关文章

  1. PDF分享:国外优秀数学教材选评

    <国外优秀数学教材选评>推荐书目下载 具体内容请查看原内容: http://www.library.fudan.edu.cn/wjzx/list/373-1-20.htm 或者http:/ ...

  2. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归

    Lecture2   Linear regression with one variable  单变量线性回归 2.1 模型表示 Model Representation 2.1.1  线性回归 Li ...

  3. 学习的矩阵微积分The matrix calculus you need for deep learning

    学习的矩阵微积分The matrix calculus you need for deep learning https://explained.ai/matrix-calculus/index.ht ...

  4. 【Calculus 微积分の一些个人理解】

    微积分 微积分(Calculus)是高等数学中研究函数的微分(Differentiation).积分(Integration)以及有关概念和应用的数学分支.它是数学的一个基础学科.内容主要包括极限.微 ...

  5. 离散外微积分(DEC:Discrete Exterior Calculus)基础

    原文链接 “若人们不相信数学简单,只因为他们未意识到生命之复杂.”——Johnvon Neumann DEC主要讨论离散情况下的外积分,它在计算机领域有重要用途.我们知道,使用计算机来处理几何图形的时 ...

  6. 《University Calculus》-chape5-积分法-微积分基本定理

    定积分中值定理: 积分自身的定义是简单的,但是在教学过程中人们往往记得的只是它的计算方法,在引入积分的概念的时候,往往就将其与计算方法紧密的捆绑在一起,实际上,在积分简单的定义之下,微积分基本定理告诉 ...

  7. 【Math for ML】向量微积分(Vector Calculus)

    I. 向量梯度 假设有一个映射函数为\(f:R^n→R^m\)和一个向量\(x=[x_1,...,x_n]^T∈R^n\),那么对应的函数值的向量为\(f(x)=[f_1(x),...,f_m(x)] ...

  8. <<Vector Calculus>>笔记

    现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...

  9. 带你领会 线性代数 微积分的本质 3blue1brown 动画效果帅出天际

    前段时间在 哔哩哔哩 上偶然发现了 3blue1brown 精美的动画,配上生动的讲解,非常适合帮助建立数学的形象思维 其中两大系列,非常值得反复观看: 线性代数的本质(Essence of line ...

  10. 5.4Python数据处理篇之Sympy系列(四)---微积分

    目录 目录 前言 (一)求导数-diff() 1.一阶求导-diff() 2.多阶求导-diff() 3.求偏导数-diff() (二)求积分-integrate() (三)求极限-limit() ( ...

随机推荐

  1. 使用MPI时执行代码时运行命令中参见的几种参数设置

    我们写完mpi代码以后需要通过执行命令运行写好的代码,此时在运行命令中加入设置参数可以更好的控制程序的运行,这里就介绍一下自己常用的几种参数设置. 相关资料,参看前文: https://www.cnb ...

  2. [CEOI2011] Matching 题解

    前言 题目链接:洛谷. 在上一题之后,模拟赛又放了一道 KMP 重定义相等的问题,但是寄了,故再记之. 题意简述 现在给出 \(1 \sim n\) 的排列 \(p\) 和序列 \(h_1, h_2, ...

  3. 根据域名获取IP

    /*************************************************************************************************** ...

  4. spring同时集成mybatis和ibatis

    最近来了一个新项目,说是新的项目,但是需要用到以前旧的模块代码,旧的模块使用架构为ssi 而新项目使用spring mvc +mybatis,考虑到工作量的问题,所以决定使用spring mvc +m ...

  5. 2023 ICPC 杭州题解

    游记 gym F. Top Cluster std 二分答案.需要判断点权 \(\le mid\) 的点到询问点的最大距离.直径. K. Card Game 设 \(f[l,r]\) 为 \([l,r ...

  6. Go 进程在容器中无 coredump 产生问题分析

    Go 进程在容器中无 coredump 产生问题分析 0x01 起因 coredump 作为一种非常重要的高度手段,在日常开发中经常用到,切换到容器环境后一直没关注.最近测试了下,发现出不了 core ...

  7. Win32 处理多个按钮共用一个事件消息

    今天在学习制作计算器小程序中,碰到要多个按钮共用一个事件的问题, 现记录下来. 在窗体上按钮排列 排列的时候要按顺序排放,也就是说,0-9的ID号要连着的. #define IDD_DIALOG1 1 ...

  8. OpenTelemetry 实战:从零实现应用指标监控

    前言 在上一篇文章:OpenTelemetry 实战:从零实现分布式链路追踪讲解了链路相关的实战,本次我们继续跟进如何使用 OpenTelemetry 集成 metrics 监控. 建议对指标监控不太 ...

  9. Cloud Studio:颠覆传统的云端开发与学习解决方案

    Cloud Studio Cloud Studio(云端 IDE)是一款基于浏览器的集成开发环境,它为开发者提供了一个高效.稳定的云端工作站.用户在使用 Cloud Studio 时,无需进行任何本地 ...

  10. 【YashanDB知识库】YMP元数据阶段二报错YAS-04204

    [问题分类]YMP迁移 [关键字]YMP迁移,YAS-04204 [问题描述]数据库采用最小规格部署,机器配置2C8G,使用YMP进行数据和对象迁移,在元数据阶段二创建索引时报错:YAS-04204 ...