名字感觉挺奇怪的。

考虑离线算法。首先答案就是用 \(n\) 减去连完边后的生成树森林边数。生成树当然就可以用 \(lct\) 求解了。我是不会告诉你这个时候我已经开始想回滚莫队了的。

考虑当我们倒序加入 \([l,r]\) 中的边时,哪些边会产生贡献。我们考虑假如我们新加入一条边,与原先的生成树形成了环,那么这个环中编号最小的那条边 \(y\) 加入时,就一定不会产生贡献。所以我们可以用线段树维护区间和,在每个询问的右端点处解决这个询问。当我们遍历到一个点 \(x\) 时,我们让 \(x\) 位置的贡献为 \(1\),让 \(y\) 位置的贡献为 \(0\),就可以 \(O(n\log n)\) 的求解了。

那么就好说了,既然是在线,直接用可持久化线段树预处理即可。

时间复杂度 \(O(n\log n)\)。

#include<bits/stdc++.h>
#define fa(x) lct[x].fa
#define fl(x) lct[x].fl
#define id(x) lct[x].id
#define sn(x,i) lct[x].sn[i]
using namespace std;
const int N=4e5+5,M=N*25;
struct node{
int sn[2],fa,fl,id;
}lct[N];int n,la,m,flag,tot;
int k,tp,rt[N],sum[M],ls[M];
int u[N],v[N],st[N],rs[M];
int check(int x){
return sn(fa(x),0)!=x&&sn(fa(x),1)!=x;
}int chksn(int x){
return sn(fa(x),1)==x;
}void push_up(int x){
id(x)=min({id(sn(x,0)),id(sn(x,1)),x});
}void push_down(int x){
if(!x||!fl(x)) return;
fl(sn(x,0))^=1,fl(sn(x,1))^=1;
swap(sn(x,0),sn(x,1)),fl(x)=0;
}void rotate(int x){
int y=fa(x),z=fa(y),k=chksn(x);
if(!check(y))
sn(z,chksn(y))=x;
fa(x)=z,fa(y)=x,fa(sn(x,1-k))=y;
sn(y,k)=sn(x,1-k),sn(x,1-k)=y;
push_up(y);
}void splay(int x){
st[tp=1]=x;
for(int i=x;!check(i);i=fa(i)) st[++tp]=fa(i);
while(tp) push_down(st[tp--]);
while(!check(x)){
int y=fa(x),z=fa(y);
if(!check(y))
rotate(chksn(x)!=chksn(y)?x:y);
rotate(x);
}push_up(x);
}void access(int x){
for(int i=0;x;i=x,x=fa(x))
splay(x),sn(x,1)=i,push_up(x);
}int find(int x){
access(x),splay(x);
while(sn(x,0)) x=sn(x,0);
return x;
}void mk(int x){
access(x),splay(x),fl(x)^=1;
}void split(int x,int y){
mk(x),access(y),splay(y);
}void cut(int x,int y){
split(x,y),sn(y,0)=fa(x)=0;
}void link(int x,int y){
mk(x),access(y),fa(x)=y;
}void add(int &x,int y,int l,int r,int k,int ad){
x=++tot,sum[x]=sum[y]+ad;
if(l==r) return;int mid=(l+r)/2;
ls[x]=ls[y],rs[x]=rs[y];
if(k<=mid) add(ls[x],ls[y],l,mid,k,ad);
else add(rs[x],rs[y],mid+1,r,k,ad);
}int gsum(int x,int l,int r,int L,int R){
if(!x||L<=l&&r<=R) return sum[x];
int mid=(l+r)/2,re=0;
if(L<=mid) re=gsum(ls[x],l,mid,L,R);
if(R>mid) re+=gsum(rs[x],mid+1,r,L,R);
return re;
}void ad(int x){
if(u[x]==v[x])
return rt[x]=rt[x-1],void();
add(rt[x],rt[x-1],1,m,x,1);
if(find(u[x]+m)!=find(v[x]+m))
return link(u[x]+m,x),link(x,v[x]+m);
split(u[x]+m,v[x]+m);int idx=id(v[x]+m);
cut(u[idx]+m,idx),cut(idx,v[idx]+m);
link(u[x]+m,x),link(x,v[x]+m);
add(rt[x],rt[x],1,m,idx,-1);
}int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m>>k>>flag,id(0)=1e9;
for(int i=1;i<=n+m;i++) id(i)=i;
for(int i=1;i<=m;i++)
cin>>u[i]>>v[i],ad(i);
while(k--){
int l,r;cin>>l>>r;if(flag) l^=la,r^=la;
cout<<(la=n-gsum(rt[r],1,m,l,r))<<"\n";
}return 0;
}

[BZOJ3514] [Codechef MARCH14] GERALD07加强版 题解的更多相关文章

  1. 【LCT+主席树】BZOJ3514 Codechef MARCH14 GERALD07加强版

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2023  Solved: 778 ...

  2. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

  3. bzoj3514 Codechef MARCH14 GERALD07加强版 lct预处理+主席树

    Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1951  Solved: 746[Submi ...

  4. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3514 题意概括 N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. N ...

  5. BZOJ3514 : Codechef MARCH14 GERALD07加强版

    以边编号为权值 用Link-cut Tree维护最大生成树 对于新加的第i条边(u,v) a[i]表示当a[i]这条边加入后连通块个数会减少 若u==v则a[i]=m 若u与v不连通则连上,a[i]= ...

  6. 沉迷Link-Cut tree无法自拔之:[BZOJ3514] Codechef MARCH14 GERALD07 加强版

    来自蒟蒻 \(Hero \_of \_Someone\) 的 \(LCT\) 学习笔记 $ $ 又是一道骚题...... 先讲一个结论: 假设我们用 \(LCT\) 来做这道题, 在插入边 \(i\) ...

  7. BZOJ3514: Codechef MARCH14 GERALD07加强版【LCT】【主席树】【思维】

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密. 接下来 ...

  8. BZOJ3514: Codechef MARCH14 GERALD07加强版(LCT,主席树)

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密.接下来M ...

  9. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT+可持久化线段树

    自己独自想出来并切掉还是很开心的~ Code: #include <bits/stdc++.h> #define N 400005 #define inf 1000000000 #defi ...

  10. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT维护最大生成树 主席树

    题面 考虑没有询问,直接给你一个图问联通块怎么做. 并查集是吧. 现在想要动态地做,那么应该要用LCT. 考虑新加进来一条边,想要让它能够减少一个联通块的条件就是现在边的两个端点还没有联通. 如果联通 ...

随机推荐

  1. 鸿蒙UI开发快速入门 —— part05:组件的样式复用

    1. 为什么要样式复用? 如果每个组件的样式都需要单独设置,在开发过程中会出现大量代码在进行重复样式设置,虽然可以复制粘贴,但为了代码简洁性和后续方便维护,样式的复用就很有必要了. 为此,鸿蒙推出了可 ...

  2. Spring 事务管理 基于配置文件

    事务概念: 原子性:要么都成功,有一个失败都失败 一致性:总量不变(A有100元,B有100元,总量是200元.A把100元转给B,B就有了200元,总量还是200元) 隔离性:两人操作同一条数据,不 ...

  3. 【WEB前端】【JQuery】搜索li标签的内容

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 【Vue】学习笔记:Vue组件

    文末有我看的这个视频的链接. 目录 组件注册 全局注册 组件基础 组件命名规则 template选项 单项数据流 data选项 局部注册 单独配置组件的选项对象 ES6对象属性简写 组件通信 父组件向 ...

  5. Argo CD使用CLI工具修改默认密码

    查看默认密码 kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpath="{.data.password}&q ...

  6. Qt/C++编写的mqtt调试助手使用说明

    一.使用说明 第一步,选择协议前缀,可选mqtt://.mqtts://.ws://.wss://四种,带s结尾的是走ssl通信,ws表示走websocket通信.一般选默认的mqtt://就好. 第 ...

  7. Qt编写的项目作品29-RTSP播放器+视频监控(海康SDK版本)

    一.功能特点 支持播放视频流和本地MP4文件. 支持句柄和回调两种模式. 多线程显示图像,不卡主界面. 自动重连网络摄像头. 可设置边框大小即偏移量和边框颜色. 可设置是否绘制OSD标签即标签文本或图 ...

  8. C#中使用ping命令测试远程主机网络通信是否正常

    说明,使用ping工具 1.可以用来查询域名是否可以访问 2.可以用来查询域名对应的ip地址 如果远程服务器允许ping命令的前提下. 解决思路:主要使用了C#提供的Ping类,效率比较高,相应快 程 ...

  9. 优化博客Ⅰ-压缩图片为webp格式

    自动压缩博客图片为webp格式 作为自己的个人博客,我非常喜欢搞一些花里胡哨的东西,其中就包括不少精美图片,但是过多的图片会占用大量的网络资源导致博客加载速度变慢. 那怎么办呢? 第一个想到的就是升级 ...

  10. 记录一下关于谷歌浏览器的开发者插件之vue-devtools

    在做vue进行开发的时候增加一个浏览器的插件进行开发可以做到游鱼得水,更加的舒适 在这里我留下一个git地址用来下载插件包 https://gitee.com/zhang_banglong/vue-d ...