class Solution {
public boolean canPartition(int[] nums) {
int sum=0;
for (int num:nums) sum+= num;
if(sum % 2 == 1) return false;
else{
sum /=2;
int n=nums.length;
// dp[i][j] 表示 如果我们取前i个数字,且背包容量为j的情况下,最多能放入多少东西
int dp[][]=new int[n][sum + 1];
// dp[0][0] 为初始状态,表示,没有任何没有东西没有体积,其余部分初始化
for(int i=nums[0];i<=sum;i++){
dp[0][i] = nums[0];
}
//遍历n个数字,即视为n个产品
for(int i=1;i<n;i++){
//加入了这种物品后更新状态
for(int j=nums[i];j<=sum;j++){
dp[i][j]=Math.max(dp[i-1][j], dp[i-1][j-nums[i]]+nums[i]);
}
}
//放满了才能表示正好1/2
if(dp[n-1][sum]==sum)
return true;
else
return false;
} }
}

补充另一种写法:

 public boolean canPartition(int[] nums) {
int sum = ; for (int num : nums) {
sum += num;
} if ((sum & ) == ) {
return false;
}
sum /= ; int n = nums.length;
boolean[][] dp = new boolean[n+][sum+];
for (int i = ; i < dp.length; i++) {
Arrays.fill(dp[i], false);
} dp[][] = true; for (int i = ; i < n+; i++) {
dp[i][] = true;
}
for (int j = ; j < sum+; j++) {
dp[][j] = false;
} for (int i = ; i < n+; i++) {
for (int j = ; j < sum+; j++) {
if (j-nums[i-1] >= 0) {
dp[i][j] = (dp[i-1][j] || dp[i-1][j-nums[i-1]]);
}
}
} return dp[n][sum];
}

参考:https://leetcode.com/problems/partition-equal-subset-sum/discuss/90592/01-knapsack-detailed-explanation

先上一张图:测试数据为nums=[1,3,3,5],判断是否可以分割为两个和为6的数组(不要求连续)。

下面解释一下思路,初始化二维数组dp,初始化全部为false,这个数组中的每一个元素表示:

在前i个元素中,任选其中0~i个元素(可以一个不选,也可以全都选),这些元素的和,是否恰好等于j。

具体来说,dp[0][0]表示前0个元素是否可以组成和为0的情况,这作为前提条件,设置为true。

除这个元素之外的第一列:

dp[1][0],表示前1个元素是否可以组成和为0的情况。答案是:可以组成。只要不选择任何元素,其和值就是0。

dp[2][0],表示前2个元素是否可以组成和为0的情况。答案是:可以组成,只要不选择任何元素,其和值就是0.

dp[3][0],dp[4][0]也是同样道理,均为true。

除dp[0][0]之外的第一行:

dp[0][1],表示前0个元素是否可以组成和为1的情况。答案是:不可以。前0个就是没有任何元素,其和不可能大于0.

dp[0][2]……dp[0][6]也是同样道理,均为false。

下面从dp[1][1]开始判断,一行一行的判断。如图绿色的行。

如果这个元素“上面”是true,那么当前元素就是true。表示当前元素不被选择,可以直接组成和i-1个元素是一样的值。

如果当前元素的列标j>=nums[i-1],则进一步判断。如图,就是比较每一个单元格的“上标注”是否大于等于“右标注”。

如果满足条件,则进一步判断:当前行的上一行的[上标-右标]的元素是否是true。

按照这个转移条件,一行一行的判断,最右下角的元素就是所求结果。表示前i个元素,是否可以组成sum值。

通过分析,可以发现,只要“最后一列”,出现过一次true,那么最终的结果就一定是ture,也就可以提前停止循环了。

具体来说,上图蓝色行的最后一列,即dp[3][6]是true,那么其下面的元素肯定都是true。也就无需后面的判断了。这样理论上可以提高效率。

leetcode416的更多相关文章

  1. [Swift]LeetCode416. 分割等和子集 | Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  2. 通过netty把百度地图API获取的地理位置从Android端发送到Java服务器端

    本篇记录我在实现时的思考过程,写给之后可能遇到困难的我自己也给到需要帮助的人. 写的比较浅显,见谅. 在写项目代码的时候,需要把Android端的位置信息传输到服务器端,通过Netty达到连续传输的效 ...

随机推荐

  1. makefile简单学习

    前言 在C语言中,我们需要将源代码生成可执行的程序.这里面其实要经过非常多的步骤.参看下图: 这中间主要通过make命令,读取一种名为“makefile”或“Makefile”的文件来实现软件的自动化 ...

  2. 关于itext生成pdf的新的demo(包含简单的提取txt文件的内容 和xml内容转化为pdf)

    一.用的iText版本为7.0.2版本,maven的配置如下: <dependencies> <!-- always needed --> <dependency> ...

  3. rod cutting

    for a rod of length i the price of it si pi,to cut the rod to earn more money package dynamic_progra ...

  4. vue.js--遇到的一些错误

    1. <sapn> - did you register the component correctly? For recursive components, make sure to p ...

  5. 20155219付颖卓《网络对抗》逆向及Bof基础

    实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包含另一个代码片段,getShe ...

  6. How to create an rpm package

    转自:https://linuxconfig.org/how-to-create-an-rpm-package Rpm is both the package manager and the pack ...

  7. java_GC

    垃圾回收1    内存分配    垃圾回收    调用垃圾回收器    对象终结            调用垃圾回收器        System.gc()和Runtime.getRuntime(). ...

  8. shiro(安全框架)

    shiro.apache.org JavaSE环境搭建Shiro框架 1/导入与 shiro相关的Jar包 所有集好的环境可以在如下目录查找 复制如上文件到工程中 2/配置文件:储存临时文件 shir ...

  9. 简单的shell脚本练习(一)

    1:求1000一内的偶数和 方法一: #!/bin/bash #用累加实现1000以内的偶数和 sum= ;i<=;i=i+)) do sum=$(($sum+$i)); done echo $ ...

  10. HTTP各种特性

    一.Http客户端 1.浏览器.打开百度首页 2.Curl工具 二.CORS 跨域(浏览器的功能) 1.修改Server.js const http = require('http'); const ...