CF 977E Cyclic Components
2 seconds
256 megabytes
standard input
standard output
You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the number of connected components which are cycles.
Here are some definitions of graph theory.
An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex aa is connected with a vertex bb, a vertex bb is also connected with a vertex aa). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.
Two vertices uu and vv belong to the same connected component if and only if there is at least one path along edges connecting uu and vv.
A connected component is a cycle if and only if its vertices can be reordered in such a way that:
- the first vertex is connected with the second vertex by an edge,
- the second vertex is connected with the third vertex by an edge,
- ...
- the last vertex is connected with the first vertex by an edge,
- all the described edges of a cycle are distinct.
A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.
There are 66 connected components, 22 of them are cycles: [7,10,16][7,10,16] and [5,11,9,15][5,11,9,15].
The first line contains two integer numbers nn and mm (1≤n≤2⋅1051≤n≤2⋅105, 0≤m≤2⋅1050≤m≤2⋅105) — number of vertices and edges.
The following mm lines contains edges: edge ii is given as a pair of vertices vivi, uiui (1≤vi,ui≤n1≤vi,ui≤n, ui≠viui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,uivi,ui) there no other pairs (vi,uivi,ui) and (ui,viui,vi) in the list of edges.
Print one integer — the number of connected components which are also cycles.
5 4
1 2
3 4
5 4
3 5
1
17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6
2
In the first example only component [3,4,5][3,4,5] is also a cycle.
The illustration above corresponds to the second example.
【题意】
给n个点,m条无向边,找有几个环。(定义:t个点,t条边,首尾依次相接,不含有其他边,围成个圈)
【分析】
网上的思路:利用并查集查找环的个数
我的思路:dfs判环,稍加修饰——
加个记忆化操作:显然每个点要么是一个环上的一点,要么不是;
1、当这个点的度数不为2,一定不是
2、当这个点的邻点不是,一定不是
【代码】
#include<vector>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=2e5+5;
int n,m,du[N],f[N];bool vis[N];
vector<int> e[N];
inline void Init(){
scanf("%d%d",&n,&m);
for(int i=1,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
e[x].push_back(y);
e[y].push_back(x);
du[x]++;du[y]++;
}
}
int dfs(int x,int fa){
int &now=f[x];
if(~now) return now;
now=1;
if(du[x]!=2) return now=0;
if(vis[x]) return now=1;
vis[x]=1;
for(int i=0;i<e[x].size();i++){
int v=e[x][i];
if(x!=fa) now&=dfs(v,x);
if(!now) return now;
}
return now;
}
inline void Solve(){
memset(f,-1,sizeof f);
int ans=0;
for(int i=1;i<=n;i++){
if(!vis[i]){
if(dfs(i,0)){
ans++;
}
}
}
printf("%d\n",ans);
}
int main(){
Init();
Solve();
return 0;
}
CF 977E Cyclic Components的更多相关文章
- Codeforce 977E Cyclic Components
dfs判断图的连通块数量~ #include<cstdio> #include<algorithm> #include<vector> #include<cs ...
- Cyclic Components CodeForces - 977E(DFS)
Cyclic Components CodeForces - 977E You are given an undirected graph consisting of nn vertices and ...
- 【codeforces div3】【E. Cyclic Components】
E. Cyclic Components time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces 977E:Cyclic Components(并查集)
题意 给出nnn个顶点和mmm条边,求这个图中环的个数 思路 利用并查集的性质,环上的顶点都在同一个集合中 在输入的时候记录下来每个顶点的度数,查找两个点相连,且度数均为222的点,如果这两个点的父节 ...
- Cyclic Components CodeForces - 977E(找简单环)
题意: 就是找出所有环的个数, 但这个环中的每个点都必须只在一个环中 解析: 在找环的过程中 判断度数是否为2就行...emm... #include <bits/stdc++.h> us ...
- Codeforce Div-3 E.Cyclic Components
You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the n ...
- S - Cyclic Components (并查集的理解)
Description You are given an undirected graph consisting of nn vertices and mm edges. Your task is t ...
- E. Cyclic Components (DFS)(Codeforces Round #479 (Div. 3))
#include <bits/stdc++.h> using namespace std; *1e5+; vector<int>p[maxn]; vector<int&g ...
- Codeforces Round #479 (Div. 3) E. Cyclic Components (思维,DFS)
题意:给你\(n\)个顶点和\(m\)条边,问它们有多少个单环(无杂环),例如图中第二个就是一个杂环. 题解:不难发现,如果某几个点能够构成单环,那么每个点一定只能连两条边.所以我们先构建邻接表,然后 ...
随机推荐
- flask内容
Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求进行预处理,然后 ...
- jQuery 学习03——HTML:捕获、设置、添加元素、删除元素、CSS类、CSS()方法、尺寸
jQuery - 获取内容text().html() 以及 val()和属性attr() jQuery 中非常重要的部分,就是操作 DOM 的能力. DOM = Document Object Mod ...
- C# 实现Remoting双向通信
本篇文章主要介绍了C# 实现Remoting双向通信,.Net Remoting 是由客户端通过Remoting,访问通道以获得服务端对象,再通过代理解析为客户端对象来实现通信的 闲来无事想玩玩双向通 ...
- Introducing XAML Standard and .NET Standard 2.0
XAML Standard We are pleased to announce XAML Standard, which is a standards-based effort to unify X ...
- 尚未备份数据库 "***" 的日志尾部。如果该日志包含您不希望丢失的工作,请使用 BACKUP LOG WITH NORECOVERY 备份该日志。
使用SQL Server 2005还原备份的数据库文件时出现的问题,如题. 前提:如果你有个数据库的.bak的备份文件. 右键点击 数据库任务-->还原-->数据库 1.还原的目标选择你要 ...
- Jetpack 架构组件 Paging 分页加载 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- 树莓派raspberry pi配置
(1)国际化语言 树莓派初装系统之后,首次启动会出现“raspi-config”工具,如下图:(若不是初次启动,在命令模式下,请输入 sudo raspi-config 命令,即可调出此界面.若在图形 ...
- 正则双重过滤 /// splitKey1 第一个正则式匹配 /// splitKey2 匹配结果中再次匹配进行替
/// <summary> /// 正则双重过滤 /// splitKey1 第一个正则式匹配 /// splitKey2 匹配结果中再次匹配进行替换 /// </summary&g ...
- Docker 版本
1. Docker 版本 长话短说:现在Docker改为基于YY.MM的版本(像Ubuntu),用户可以选择Stable(发布较慢)或者Edge(发布较快)版本. Docker Engine改为Doc ...
- Atitit 如何创新 创新只有在两种条件下发生:自由、效率。
Atitit 如何创新 创新只有在两种条件下发生:自由.效率. 创新是如何发生的呢? 创新只有在两种条件下发生:自由.效率.在自由的环境下,对效率的追逐等于创新.如果你不自由,你的思想不够开阔,你脑洞 ...