CF 977E Cyclic Components
2 seconds
256 megabytes
standard input
standard output
You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the number of connected components which are cycles.
Here are some definitions of graph theory.
An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex aa is connected with a vertex bb, a vertex bb is also connected with a vertex aa). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.
Two vertices uu and vv belong to the same connected component if and only if there is at least one path along edges connecting uu and vv.
A connected component is a cycle if and only if its vertices can be reordered in such a way that:
- the first vertex is connected with the second vertex by an edge,
- the second vertex is connected with the third vertex by an edge,
- ...
- the last vertex is connected with the first vertex by an edge,
- all the described edges of a cycle are distinct.
A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.
There are 66 connected components, 22 of them are cycles: [7,10,16][7,10,16] and [5,11,9,15][5,11,9,15].
The first line contains two integer numbers nn and mm (1≤n≤2⋅1051≤n≤2⋅105, 0≤m≤2⋅1050≤m≤2⋅105) — number of vertices and edges.
The following mm lines contains edges: edge ii is given as a pair of vertices vivi, uiui (1≤vi,ui≤n1≤vi,ui≤n, ui≠viui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,uivi,ui) there no other pairs (vi,uivi,ui) and (ui,viui,vi) in the list of edges.
Print one integer — the number of connected components which are also cycles.
5 4
1 2
3 4
5 4
3 5
1
17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6
2
In the first example only component [3,4,5][3,4,5] is also a cycle.
The illustration above corresponds to the second example.
【题意】
给n个点,m条无向边,找有几个环。(定义:t个点,t条边,首尾依次相接,不含有其他边,围成个圈)
【分析】
网上的思路:利用并查集查找环的个数
我的思路:dfs判环,稍加修饰——
加个记忆化操作:显然每个点要么是一个环上的一点,要么不是;
1、当这个点的度数不为2,一定不是
2、当这个点的邻点不是,一定不是
【代码】
#include<vector>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=2e5+5;
int n,m,du[N],f[N];bool vis[N];
vector<int> e[N];
inline void Init(){
scanf("%d%d",&n,&m);
for(int i=1,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
e[x].push_back(y);
e[y].push_back(x);
du[x]++;du[y]++;
}
}
int dfs(int x,int fa){
int &now=f[x];
if(~now) return now;
now=1;
if(du[x]!=2) return now=0;
if(vis[x]) return now=1;
vis[x]=1;
for(int i=0;i<e[x].size();i++){
int v=e[x][i];
if(x!=fa) now&=dfs(v,x);
if(!now) return now;
}
return now;
}
inline void Solve(){
memset(f,-1,sizeof f);
int ans=0;
for(int i=1;i<=n;i++){
if(!vis[i]){
if(dfs(i,0)){
ans++;
}
}
}
printf("%d\n",ans);
}
int main(){
Init();
Solve();
return 0;
}
CF 977E Cyclic Components的更多相关文章
- Codeforce 977E Cyclic Components
dfs判断图的连通块数量~ #include<cstdio> #include<algorithm> #include<vector> #include<cs ...
- Cyclic Components CodeForces - 977E(DFS)
Cyclic Components CodeForces - 977E You are given an undirected graph consisting of nn vertices and ...
- 【codeforces div3】【E. Cyclic Components】
E. Cyclic Components time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces 977E:Cyclic Components(并查集)
题意 给出nnn个顶点和mmm条边,求这个图中环的个数 思路 利用并查集的性质,环上的顶点都在同一个集合中 在输入的时候记录下来每个顶点的度数,查找两个点相连,且度数均为222的点,如果这两个点的父节 ...
- Cyclic Components CodeForces - 977E(找简单环)
题意: 就是找出所有环的个数, 但这个环中的每个点都必须只在一个环中 解析: 在找环的过程中 判断度数是否为2就行...emm... #include <bits/stdc++.h> us ...
- Codeforce Div-3 E.Cyclic Components
You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the n ...
- S - Cyclic Components (并查集的理解)
Description You are given an undirected graph consisting of nn vertices and mm edges. Your task is t ...
- E. Cyclic Components (DFS)(Codeforces Round #479 (Div. 3))
#include <bits/stdc++.h> using namespace std; *1e5+; vector<int>p[maxn]; vector<int&g ...
- Codeforces Round #479 (Div. 3) E. Cyclic Components (思维,DFS)
题意:给你\(n\)个顶点和\(m\)条边,问它们有多少个单环(无杂环),例如图中第二个就是一个杂环. 题解:不难发现,如果某几个点能够构成单环,那么每个点一定只能连两条边.所以我们先构建邻接表,然后 ...
随机推荐
- 转 Configuring Relationships with the Fluent API
http://msdn.microsoft.com/zh-cn/data/jj591620 Configuring a Required-to-Optional Relationship (One-t ...
- GMA Round 1 双曲线与面积
传送门 双曲线与面积 P是双曲线$\frac{x^2}{1471^2}-\frac{y^2}{1372^2}=1$上的一个动点,现在过P作一条直线与该双曲线的两条渐近线相交于A.B两点,且|AP|=| ...
- Deepin 15.4 升级 chrome flash
到 adobe 官方下载 flash插件 flash_player_ppapi_linux ~/.config/google-chrome/PepperFlash下建个目录 23.0.0.185,把 ...
- 宿主机系统 Deepin 15.4,解决 Virtualbox 5.1 中 XP虚拟机无法使用 USB设备(如:U盘、罗技优联接收器等)的问题
软件环境 宿主机系统:Deepin 15.4.1, 虚拟机软件:VirtualBox 5.1 虚拟机系统:XP 操作步骤如下: (1) 安装 Virtualbox Extension Pack 进入 ...
- C#异步Task编程模型实战手册
一.课程介绍 本次分享课程属于<C#高级编程实战技能开发宝典课程系列>中的第一部分,阿笨后续会计划将实际项目中的一些比较实用的关于C#高级编程的技巧分享出来给大家进行学习,不断的收集.整理 ...
- 设备树(device tree)学习笔记
作者信息 作者:彭东林 邮箱:pengdonglin137@163.com 1.反编译设备树 在设备树学习的时候,如果可以看到最终生成的设备树的内容,对于我们学习设备树以及分析问题有很大帮助.这里我们 ...
- [Web 前端] mobx教程(五)-Mobx常见问题及解决方案(1)Mobx使用严格模式
copy from : https://blog.csdn.net/smk108/article/details/83185745 mobx在严格模式下,不允许在 action 外更改任何状态.但是不 ...
- 主流CTR预估模型的演化及对比
https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏. ...
- 使用Nodpad++正则替换
例如有以下格式数据: 现在需要将每一行的10位长度的数字串后面增加等号“=”
- html5学习笔记3——高级特性
一:Web存储 数据以 键/值 对存在, web网页的数据只允许该网页访问使用. web存储有两种: localStorage - 没有时间限制的数据存储,存于浏览器缓存 sessionStorage ...