E. Cyclic Components
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the number of connected components which are cycles.

Here are some definitions of graph theory.

An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex aa is connected with a vertex bb, a vertex bb is also connected with a vertex aa). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.

Two vertices uu and vv belong to the same connected component if and only if there is at least one path along edges connecting uu and vv.

A connected component is a cycle if and only if its vertices can be reordered in such a way that:

  • the first vertex is connected with the second vertex by an edge,
  • the second vertex is connected with the third vertex by an edge,
  • ...
  • the last vertex is connected with the first vertex by an edge,
  • all the described edges of a cycle are distinct.

A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.

There are 66 connected components, 22 of them are cycles: [7,10,16][7,10,16] and [5,11,9,15][5,11,9,15].

Input

The first line contains two integer numbers nn and mm (1≤n≤2⋅1051≤n≤2⋅105, 0≤m≤2⋅1050≤m≤2⋅105) — number of vertices and edges.

The following mm lines contains edges: edge ii is given as a pair of vertices vivi, uiui (1≤vi,ui≤n1≤vi,ui≤n, ui≠viui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,uivi,ui) there no other pairs (vi,uivi,ui) and (ui,viui,vi) in the list of edges.

Output

Print one integer — the number of connected components which are also cycles.

Examples
input

Copy
5 4
1 2
3 4
5 4
3 5
output

Copy
1
input

Copy
17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6
output

Copy
2
Note

In the first example only component [3,4,5][3,4,5] is also a cycle.

The illustration above corresponds to the second example.

【题意】

给n个点,m条无向边,找有几个。(定义:t个点,t条边,首尾依次相接,不含有其他边,围成个圈)

【分析】

网上的思路:利用并查集查找环的个数

我的思路:dfs判环,稍加修饰——

加个记忆化操作:显然每个点要么是一个环上的一点,要么不是;

1、当这个点的度数不为2,一定不是

2、当这个点的邻点不是,一定不是

【代码】

#include<vector>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=2e5+5;
int n,m,du[N],f[N];bool vis[N];
vector<int> e[N];
inline void Init(){
scanf("%d%d",&n,&m);
for(int i=1,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
e[x].push_back(y);
e[y].push_back(x);
du[x]++;du[y]++;
}
}
int dfs(int x,int fa){
int &now=f[x];
if(~now) return now;
now=1;
if(du[x]!=2) return now=0;
if(vis[x]) return now=1;
vis[x]=1;
for(int i=0;i<e[x].size();i++){
int v=e[x][i];
if(x!=fa) now&=dfs(v,x);
if(!now) return now;
}
return now;
}
inline void Solve(){
memset(f,-1,sizeof f);
int ans=0;
for(int i=1;i<=n;i++){
if(!vis[i]){
if(dfs(i,0)){
ans++;
}
}
}
printf("%d\n",ans);
}
int main(){
Init();
Solve();
return 0;
}

CF 977E Cyclic Components的更多相关文章

  1. Codeforce 977E Cyclic Components

    dfs判断图的连通块数量~ #include<cstdio> #include<algorithm> #include<vector> #include<cs ...

  2. Cyclic Components CodeForces - 977E(DFS)

    Cyclic Components CodeForces - 977E You are given an undirected graph consisting of nn vertices and  ...

  3. 【codeforces div3】【E. Cyclic Components】

    E. Cyclic Components time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  4. Codeforces 977E:Cyclic Components(并查集)

    题意 给出nnn个顶点和mmm条边,求这个图中环的个数 思路 利用并查集的性质,环上的顶点都在同一个集合中 在输入的时候记录下来每个顶点的度数,查找两个点相连,且度数均为222的点,如果这两个点的父节 ...

  5. Cyclic Components CodeForces - 977E(找简单环)

    题意: 就是找出所有环的个数, 但这个环中的每个点都必须只在一个环中 解析: 在找环的过程中 判断度数是否为2就行...emm... #include <bits/stdc++.h> us ...

  6. Codeforce Div-3 E.Cyclic Components

    You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the n ...

  7. S - Cyclic Components (并查集的理解)

    Description You are given an undirected graph consisting of nn vertices and mm edges. Your task is t ...

  8. E. Cyclic Components (DFS)(Codeforces Round #479 (Div. 3))

    #include <bits/stdc++.h> using namespace std; *1e5+; vector<int>p[maxn]; vector<int&g ...

  9. Codeforces Round #479 (Div. 3) E. Cyclic Components (思维,DFS)

    题意:给你\(n\)个顶点和\(m\)条边,问它们有多少个单环(无杂环),例如图中第二个就是一个杂环. 题解:不难发现,如果某几个点能够构成单环,那么每个点一定只能连两条边.所以我们先构建邻接表,然后 ...

随机推荐

  1. Chrome_调试js出现Uncaught SyntaxError: Unexpected identifier

    转载自:http://blog.csdn.net/yiluoak_47/article/details/7663952 chrome下运行编写的JavaScript代码时,在工具javascript控 ...

  2. Vue(二)vue-devtools插件

    安装vue-devtools插件,便于在chrome中调试vue https://github.com/vuejs/vue-devtools 因为chrome要FQ,打不开,所以不能直接进去安装拓展程 ...

  3. Windows软件

    安装地址:C:\Users\Username\AppData\Local\Programs 网页 Chrome 下载地址:https://www.google.cn/chrome/thank-you. ...

  4. Impala Apache Hadoop 安装方法

    http://blog.csdn.net/mayp1/article/details/50952512

  5. Nginx的https配置记录以及http强制跳转到https的方法梳理

    一.Nginx安装(略)安装的时候需要注意加上 --with-http_ssl_module,因为http_ssl_module不属于Nginx的基本模块.Nginx安装方法: 1 2 # ./con ...

  6. jQuery 选择同时包含两个或多个class的元素的实现方法

    Jquery选择器 多个 class属性参照以下案例 <element class="a b good list card"> 1. 交集选择: $(".a. ...

  7. 【重要】将项目发布到Maven中央库

    http://www.ruanyifeng.com/blog/2013/07/gpg.html

  8. 为ExecutorService增加shutdown hook

    public class ShutdownHook { private static final ShutdownHook INSTANCE = new ShutdownHook(); private ...

  9. geos 3.6.3库windows版本 已编译完成的32位版本和64位版本

    网上教编译方法的很多,直接分享编译完成的很少. 我就把编译完成的分享出来吧. ​geos-3.6.3.tar.bz2 (Changes) 版本的 https://trac.osgeo.org/geos ...

  10. C#中IEnumerable、ICollection、IList、List之间的区别

    IEnumerable.ICollection.IList.List之间的区别,本文分别分析了它的实现源码,从而总结出了它们之间的关系和不同之处. 首先我看看 IEnumerable: // 摘要: ...