Spark Distributed matrix 分布式矩阵
RowMatrix行矩阵
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.distributed.RowMatrix val df1 = Seq(
| (1.0, 2.0, 3.0),
| (1.1, 2.1, 3.1),
| (1.2, 2.2, 3.2)).toDF("c1", "c2", "c3")
df1: org.apache.spark.sql.DataFrame = [c1: double, c2: double ... 1 more field] df1.show
+---+---+---+
| c1| c2| c3|
+---+---+---+
|1.0|2.0|3.0|
|1.1|2.1|3.1|
|1.2|2.2|3.2|
+---+---+---+ // DataFrame转换成RDD[Vector]
val rowsVector= df1.rdd.map {
| x =>
| Vectors.dense(
| x(0).toString().toDouble,
| x(1).toString().toDouble,
| x(2).toString().toDouble)
| }
rowsVector: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] = MapPartitionsRDD[4] at map // Create a RowMatrix from an RDD[Vector].
val mat1: RowMatrix = new RowMatrix(rowsVector)
mat1: org.apache.spark.mllib.linalg.distributed.RowMatrix = org.apache.spark.mllib.linalg.distributed.RowMatrix@7ba821ef // Get its size.
val m = mat1.numRows()
m: Long = 3 val n = mat1.numCols()
n: Long = 3 // 将RowMatrix转换成DataFrame
val resDF = mat1.rows.map {
| x =>
| (x(0).toDouble,
| x(1).toDouble,
| x(2).toDouble)
| }.toDF("c1", "c2", "c3")
resDF: org.apache.spark.sql.DataFrame = [c1: double, c2: double ... 1 more field] resDF.show
+---+---+---+
| c1| c2| c3|
+---+---+---+
|1.0|2.0|3.0|
|1.1|2.1|3.1|
|1.2|2.2|3.2|
+---+---+---+ mat1.rows.collect().take(10)
res3: Array[org.apache.spark.mllib.linalg.Vector] = Array([1.0,2.0,3.0], [1.1,2.1,3.1], [1.2,2.2,3.2])
CoordinateMatrix坐标矩阵
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry} // 第一列:行坐标;第二列:列坐标;第三列:矩阵元素
val df = Seq(
| (0, 0, 1.1), (0, 1, 1.2), (0, 2, 1.3),
| (1, 0, 2.1), (1, 1, 2.2), (1, 2, 2.3),
| (2, 0, 3.1), (2, 1, 3.2), (2, 2, 3.3),
| (3, 0, 4.1), (3, 1, 4.2), (3, 2, 4.3)).toDF("row", "col", "value")
df: org.apache.spark.sql.DataFrame = [row: int, col: int ... 1 more field] df.show
+---+---+-----+
|row|col|value|
+---+---+-----+
| 0| 0| 1.1|
| 0| 1| 1.2|
| 0| 2| 1.3|
| 1| 0| 2.1|
| 1| 1| 2.2|
| 1| 2| 2.3|
| 2| 0| 3.1|
| 2| 1| 3.2|
| 2| 2| 3.3|
| 3| 0| 4.1|
| 3| 1| 4.2|
| 3| 2| 4.3|
+---+---+-----+ // 生成入口矩阵
val entr = df.rdd.map { x =>
| val a = x(0).toString().toLong
| val b = x(1).toString().toLong
| val c = x(2).toString().toDouble
| MatrixEntry(a, b, c)
| }
entr: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.distributed.MatrixEntry] = MapPartitionsRDD[20] at map // 生成坐标矩阵
val mat: CoordinateMatrix = new CoordinateMatrix(entr)
mat: org.apache.spark.mllib.linalg.distributed.CoordinateMatrix = org.apache.spark.mllib.linalg.distributed.CoordinateMatrix@5381deec mat.numRows()
res5: Long = 4 mat.numCols()
res6: Long = 3 mat.entries.collect().take(10)
res7: Array[org.apache.spark.mllib.linalg.distributed.MatrixEntry] = Array(MatrixEntry(0,0,1.1), MatrixEntry(0,1,1.2), MatrixEntry(0,2,1.3), MatrixEntry(1,0,2.1), MatrixEntry(1,1,2.2), MatrixEntry(1,2,2.3), MatrixEntry(2,0,3.1), MatrixEntry(2,1,3.2), MatrixEntry(2,2,3.3), MatrixEntry(3,0,4.1)) // 坐标矩阵转成,带行索引的DataFrame,行索引为行坐标
val t = mat.toIndexedRowMatrix().rows.map { x =>
| val v=x.vector
| (x.index,v(0).toDouble, v(1).toDouble, v(2).toDouble)
| }
t: org.apache.spark.rdd.RDD[(Long, Double, Double, Double)] = MapPartitionsRDD[33] at map t.toDF().show
+---+---+---+---+
| _1| _2| _3| _4|
+---+---+---+---+
| 0|1.1|1.2|1.3|
| 1|2.1|2.2|2.3|
| 2|3.1|3.2|3.3|
| 3|4.1|4.2|4.3|
+---+---+---+---+ // 坐标矩阵转成DataFrame
val t1 = mat.toRowMatrix().rows.map { x =>
| (x(0).toDouble, x(1).toDouble, x(2).toDouble)
| }
t1: org.apache.spark.rdd.RDD[(Double, Double, Double)] = MapPartitionsRDD[26] at map t1.toDF().show
+---+---+---+
| _1| _2| _3|
+---+---+---+
|1.1|1.2|1.3|
|3.1|3.2|3.3|
|2.1|2.2|2.3|
|4.1|4.2|4.3|
+---+---+---+
Spark Distributed matrix 分布式矩阵的更多相关文章
- Spark Mllib里的分布式矩阵(行矩阵、带有行索引的行矩阵、坐标矩阵和块矩阵概念、构成)(图文详解)
不多说,直接上干货! Distributed matrix : 分布式矩阵 一般能采用分布式矩阵,说明这数据存储下来,量还是有一定的.在Spark Mllib里,提供了四种分布式矩阵存储形式,均由支 ...
- Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API
Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distrib ...
- [CareerCup] 1.7 Set Matrix Zeroes 矩阵赋零
1.7 Write an algorithm such that if an element in an MxN matrix is 0, its entire row and column are ...
- A Practical Guide to Distributed Scrum - 分布式Scrum的实用指南 - 读书笔记
最近读了这本IBM出的<A Practical Guide to Distributed Scrum>(分布式Scrum的实用指南),书中的章节结构比较清楚,是针对Scrum项目进行,一个 ...
- 在Hadoop2.2基础上安装Spark(伪分布式)
没想到,在我的hadoop2.2.0小集群上上安装传说中的Spark竟然如此顺利,可能是因为和搭建Hadoop时比较像,更多需要学习的地方还是scala编程和RDD机制吧 总之,开个好头 原来的集群: ...
- css3 matrix 2D矩阵和canvas transform 2D矩阵
一看到“2D矩阵”这个高大上的名词,有的同学可能会有种畏惧感,“矩阵”,看起来好高深的样子,我还是看点简单的吧.其实本文就很简单,你只需要有一点点css3 transform的基础就好. 没有前戏,直 ...
- Leetcode 54:Spiral Matrix 螺旋矩阵
54:Spiral Matrix 螺旋矩阵 Given a matrix of m x n elements (m rows, n columns), return all elements of t ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- 【Distributed】分布式解决方案【汇总】
一.问题引出 二.分布式Session问题 三.网站跨域问题 四.分布式任务调度平台 五.分布式配置中心 六.分布式锁解决方案 七.缓存技术 一.问题引出 [Distributed]分布式系统中遇到的 ...
随机推荐
- JQ02
JQ02 1.css操作 .css(属性名,属性值)://要有双引号 修改单个样式,若要修改多个,需采用以下方式: 以对象为参数 它还可以获取样式: .css("属性名") 若元素 ...
- Google C++ 单元测试 GTest
from : http://www.cnblogs.com/jycboy/p/6057677.html 一.设置一个新的测试项目 在用google test写测试项目之前,需要先编译gtest到lib ...
- pycharm 注册码/License server 2017年最新
两种方法: 1.选License server激活,输入:http://idea.imsxm.com 2.2017年激活码 时效1年BIG3CLIK6F-eyJsaWNlbnNlSWQiOiJCSUc ...
- androidstudio全局搜索快捷键Ctrl+Shift+F失效的解决办法
与输入法设置冲突!!修改了就可以了.用的搜狗输入法,它的此快捷键也为简繁体替换.修改成其他的即可 null
- PPTP服务端与客户端 修改默认PPTP默认端口1723
linux pptp服务端:我们在Linux下建立的pptpd端口号默认是1723,有时候这个端口并不是那么的好用,不是麽?所以服务端修改端口号比较简单 修改 /etc/services 文件查找 1 ...
- jquery append 和appendTo
原文: https://www.cnblogs.com/stitchgogo/p/5721551.html ---------------------------------------------- ...
- Glide终于解决了同时绑定多个webp格式图片的问题
前端时间,要给项目换个图片加载的库,使用Glide 3.7版本进行测试, 发现在快速滑动列表(每个item都会加载一个app的图标,采用webp格式,即同时加载多个webp格式)的时候,一屏至少有2- ...
- mysql 让id字段 以1000 形式开头
eg: alter table t_location AUTO_INCREMENT=1000;
- SSE图像算法优化系列六:OpenCv关于灰度积分图的SSE代码学习和改进。
最近一直沉迷于SSE方面的优化,实在找不到想学习的参考资料了,就拿个笔记本放在腿上翻翻OpenCv的源代码,无意中看到了OpenCv中关于积分图的代码,仔细研习了一番,觉得OpenCv对SSE的灵活运 ...
- Python 3安装MySQLdb
Python 2安装的是mysql-python,Python 3安装mysql-python以后,仍然不能import MySQLdb,原来Python 3应该安装mysqlclient,就可以im ...