【Luogu5108】仰望半月的夜空(后缀数组)
【Luogu5108】仰望半月的夜空(后缀数组)
题面
题解
实名举报这题在比赛之前还不是这个样子的,还被我用SAM给水过去了
很明显求出\(SA\)之后就是按照\(SA\)的顺序从前往后考虑每一个长度,这样可以知道串是什么。
不过如果串相同要左端点最靠左,所以二分包含这个串的区间,用\(RMQ\)求出区间最小值即可。
(其实就是拿来复习SA板子的)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAX 400200
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,sig;
char ch[MAX];
int S[MAX],tot,a[MAX],lg[MAX];
int t[MAX],x[MAX],y[MAX],rk[MAX],SA[MAX],hg[20][MAX],mn[20][MAX];
bool cmp(int i,int j,int k){return y[i]==y[j]&&y[i+k]==y[j+k];}
void GetSA()
{
int m=tot;
for(int i=1;i<=n;++i)t[x[i]=a[i]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int p=0;
for(int i=n-k+1;i<=n;++i)y[++p]=i;
for(int i=1;i<=n;++i)if(SA[i]>k)y[++p]=SA[i]-k;
for(int i=1;i<=m;++i)t[i]=0;
for(int i=1;i<=n;++i)t[x[y[i]]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[y[i]]]--]=y[i];
swap(x,y);x[SA[1]]=p=1;
for(int i=2;i<=n;++i)x[SA[i]]=cmp(SA[i],SA[i-1],k)?p:++p;
if(p>=n)break;m=p;
}
for(int i=1;i<=n;++i)rk[SA[i]]=i;
for(int i=2;i<=n;++i)lg[i]=lg[i>>1]+1;
for(int i=1,j=0;i<=n;++i)
{
if(j)--j;
while(a[i+j]==a[SA[rk[i]-1]+j])++j;
hg[0][rk[i]]=j;
}
for(int j=1;j<=lg[n];++j)
for(int i=1;i+(1<<j)-1<=n;++i)
hg[j][i]=min(hg[j-1][i],hg[j-1][i+(1<<(j-1))]);
for(int i=1;i<=n;++i)mn[0][i]=SA[i];
for(int j=1;j<=lg[n];++j)
for(int i=1;i+(1<<j)-1<=n;++i)
mn[j][i]=min(mn[j-1][i],mn[j-1][i+(1<<(j-1))]);
}
int lcp(int i,int j)
{
if(i==j)return 1e9;i=rk[i];j=rk[j];
if(i>j)swap(i,j);i+=1;int k=lg[j-i+1];
return min(hg[k][i],hg[k][j-(1<<k)+1]);
}
int RMQ(int i,int j)
{
if(i>j)swap(i,j);int k=lg[j-i+1];
return min(mn[k][i],mn[k][j-(1<<k)+1]);
}
int main()
{
sig=read();n=read();
if(sig==26)
{
scanf("%s",ch+1);n=strlen(ch+1);
for(int i=1;i<=n;++i)a[i]=ch[i]-96;
}
else for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)S[++tot]=a[i];
sort(&S[1],&S[n+1]);tot=unique(&S[1],&S[n+1])-S-1;
for(int i=1;i<=n;++i)a[i]=lower_bound(&S[1],&S[tot+1],a[i])-S;
GetSA();
for(int i=1,p=1;i<=n;++i)
{
while(n-SA[p]+1<i)++p;
int l=p+1,r=n,ret=p;
while(l<=r)
{
int mid=(l+r)>>1;
if(lcp(SA[p],SA[mid])>=i)l=mid+1,ret=mid;
else r=mid-1;
}
printf("%d ",RMQ(p,ret));
}
puts("");return 0;
}
【Luogu5108】仰望半月的夜空(后缀数组)的更多相关文章
- 洛谷P5108 仰望半月的夜空(后缀数组)
题意 题目链接 Sol warning:下面这个做法只有95分,本地拍了1w+组都没找到错误我表示十分无能为力 我们考虑每个串的排名去更新答案,显然排名为\(1\)的后缀的前缀一定是当前长度的字典序最 ...
- luoguP5108 仰望半月的夜空 [官方?]题解 后缀数组 / 后缀树 / 后缀自动机 + 线段树 / st表 + 二分
仰望半月的夜空 题解 可以的话,支持一下原作吧... 这道题数据很弱..... 因此各种乱搞估计都是能过的.... 算法一 暴力长度然后判断判断,复杂度\(O(n^3)\) 期望得分15分 算法二 通 ...
- 洛谷 P5108 仰望半月的夜空 解题报告
P5108 仰望半月的夜空 题目描述 半月的夜空中,寄托了多少人与人之间的思念啊 曦月知道,这些思念会汇集成一个字符串\(S(n = |S|)\) 由于思念汇集的过于复杂,因此曦月希望提炼出所有的思念 ...
- 后缀数组的倍增算法(Prefix Doubling)
后缀数组的倍增算法(Prefix Doubling) 文本内容除特殊注明外,均在知识共享署名-非商业性使用-相同方式共享 3.0协议下提供,附加条款亦可能应用. 最近在自学习BWT算法(Burrows ...
- BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]
4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...
- BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]
1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1383 Solved: 582[Submit][St ...
- POJ3693 Maximum repetition substring [后缀数组 ST表]
Maximum repetition substring Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9458 Acc ...
- POJ1743 Musical Theme [后缀数组]
Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 27539 Accepted: 9290 De ...
- 后缀数组(suffix array)详解
写在前面 在字符串处理当中,后缀树和后缀数组都是非常有力的工具. 其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料. 其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现, ...
随机推荐
- odoo在底部显示指定字段合计和汇总时显示合计
1.odoo的tree视图底部显示合计 tree 视图,底部显示指定字段合计数 ,视图中字段定义上在sum,取自sale.view_order_tree 销售订单 tree 视图 <field ...
- springboot+websocket 归纳收集
websocket是h5后的技术,主要实现是一个长连接跟tomcat的comet技术差不多,但websocket是基于web协议的,有更广泛的支持.当然,在处理高并发的情况下,可以结合tomcat的a ...
- 《Linux内核设计与实现》第一二章笔记
第一章 linux内核简介 每个处理器在任何时间点上的活动必然概括为下列三者: 运行于用户空间,执行用户进程 运行于内核空间,处于进程上下文,代表某个特定的进程执行 运行于内核空间,处于中断上下文,与 ...
- 20135337——Linux内核分析:第十七章 模块与设备
第17章 模块与设备 设备类型:在所有 Unix 系统中为了统一普通设备的操作所采用的分类. 模块: Linux 内核中用于按需加载和卸载目标码的机制. 内核对象:内核数据结构中支持面向对象的简单操作 ...
- beta版使用说明
StudyAssistant说明书 我们的软件使用简单方便,下面就让我们在介绍软件界面的同时一同来介绍我们的软件使用方法: 1.这是我们软件的首页界面,单刀直入,简单明了,四科同时类课程,更好的帮助同 ...
- java中定时执行任务
现在项目中用到需要定时去检查文件是否更新的功能.timer正好用于此处. 用法很简单,new一个timer,然后写一个timertask的子类即可. 代码如下: package comz.autoup ...
- Sprint 冲刺第二阶段之1---5天(上)
11月24号——12月8号,这一个时间段学校的电压不是很稳定,时不时会断电,为了冲刺的完整性,我们商量决定把这一时间段做的事情写成一个连贯的小日记.然后统一在整个时间段一起发出来. 经过一个阶段的努力 ...
- Distances to Zero CodeForces - 803B (二分)
题目链接:https://vjudge.net/problem/CodeForces-803B#author=0 题意: 给你一个数组,其中至少包括一个0,求每一个元素距离最近一个0的距离是多少. 样 ...
- ABP集成短信发送模块
ABPZero并没有手机短信发送功能,现在我们来集成一个,为后面注册.登录作铺垫. 阿里云短信服务 首先需要在阿里云开通短信服务,连接地址 开通后,在签名管理中添加一个签名 在模板管理中添加一个模板, ...
- 业务-----添加Service常用逻辑
1.参数不能为空 /** * 添加人员时判断是否字段全部传值 * @param request * @return */ private Boolean checkClientByCols(Clien ...