【Luogu5108】仰望半月的夜空(后缀数组)

题面

洛谷

题解

实名举报这题在比赛之前还不是这个样子的,还被我用SAM给水过去了

很明显求出\(SA\)之后就是按照\(SA\)的顺序从前往后考虑每一个长度,这样可以知道串是什么。

不过如果串相同要左端点最靠左,所以二分包含这个串的区间,用\(RMQ\)求出区间最小值即可。

(其实就是拿来复习SA板子的)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAX 400200
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,sig;
char ch[MAX];
int S[MAX],tot,a[MAX],lg[MAX];
int t[MAX],x[MAX],y[MAX],rk[MAX],SA[MAX],hg[20][MAX],mn[20][MAX];
bool cmp(int i,int j,int k){return y[i]==y[j]&&y[i+k]==y[j+k];}
void GetSA()
{
int m=tot;
for(int i=1;i<=n;++i)t[x[i]=a[i]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int p=0;
for(int i=n-k+1;i<=n;++i)y[++p]=i;
for(int i=1;i<=n;++i)if(SA[i]>k)y[++p]=SA[i]-k;
for(int i=1;i<=m;++i)t[i]=0;
for(int i=1;i<=n;++i)t[x[y[i]]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[y[i]]]--]=y[i];
swap(x,y);x[SA[1]]=p=1;
for(int i=2;i<=n;++i)x[SA[i]]=cmp(SA[i],SA[i-1],k)?p:++p;
if(p>=n)break;m=p;
}
for(int i=1;i<=n;++i)rk[SA[i]]=i;
for(int i=2;i<=n;++i)lg[i]=lg[i>>1]+1;
for(int i=1,j=0;i<=n;++i)
{
if(j)--j;
while(a[i+j]==a[SA[rk[i]-1]+j])++j;
hg[0][rk[i]]=j;
}
for(int j=1;j<=lg[n];++j)
for(int i=1;i+(1<<j)-1<=n;++i)
hg[j][i]=min(hg[j-1][i],hg[j-1][i+(1<<(j-1))]);
for(int i=1;i<=n;++i)mn[0][i]=SA[i];
for(int j=1;j<=lg[n];++j)
for(int i=1;i+(1<<j)-1<=n;++i)
mn[j][i]=min(mn[j-1][i],mn[j-1][i+(1<<(j-1))]);
}
int lcp(int i,int j)
{
if(i==j)return 1e9;i=rk[i];j=rk[j];
if(i>j)swap(i,j);i+=1;int k=lg[j-i+1];
return min(hg[k][i],hg[k][j-(1<<k)+1]);
}
int RMQ(int i,int j)
{
if(i>j)swap(i,j);int k=lg[j-i+1];
return min(mn[k][i],mn[k][j-(1<<k)+1]);
}
int main()
{
sig=read();n=read();
if(sig==26)
{
scanf("%s",ch+1);n=strlen(ch+1);
for(int i=1;i<=n;++i)a[i]=ch[i]-96;
}
else for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)S[++tot]=a[i];
sort(&S[1],&S[n+1]);tot=unique(&S[1],&S[n+1])-S-1;
for(int i=1;i<=n;++i)a[i]=lower_bound(&S[1],&S[tot+1],a[i])-S;
GetSA();
for(int i=1,p=1;i<=n;++i)
{
while(n-SA[p]+1<i)++p;
int l=p+1,r=n,ret=p;
while(l<=r)
{
int mid=(l+r)>>1;
if(lcp(SA[p],SA[mid])>=i)l=mid+1,ret=mid;
else r=mid-1;
}
printf("%d ",RMQ(p,ret));
}
puts("");return 0;
}

【Luogu5108】仰望半月的夜空(后缀数组)的更多相关文章

  1. 洛谷P5108 仰望半月的夜空(后缀数组)

    题意 题目链接 Sol warning:下面这个做法只有95分,本地拍了1w+组都没找到错误我表示十分无能为力 我们考虑每个串的排名去更新答案,显然排名为\(1\)的后缀的前缀一定是当前长度的字典序最 ...

  2. luoguP5108 仰望半月的夜空 [官方?]题解 后缀数组 / 后缀树 / 后缀自动机 + 线段树 / st表 + 二分

    仰望半月的夜空 题解 可以的话,支持一下原作吧... 这道题数据很弱..... 因此各种乱搞估计都是能过的.... 算法一 暴力长度然后判断判断,复杂度\(O(n^3)\) 期望得分15分 算法二 通 ...

  3. 洛谷 P5108 仰望半月的夜空 解题报告

    P5108 仰望半月的夜空 题目描述 半月的夜空中,寄托了多少人与人之间的思念啊 曦月知道,这些思念会汇集成一个字符串\(S(n = |S|)\) 由于思念汇集的过于复杂,因此曦月希望提炼出所有的思念 ...

  4. 后缀数组的倍增算法(Prefix Doubling)

    后缀数组的倍增算法(Prefix Doubling) 文本内容除特殊注明外,均在知识共享署名-非商业性使用-相同方式共享 3.0协议下提供,附加条款亦可能应用. 最近在自学习BWT算法(Burrows ...

  5. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  6. BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]

    1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1383  Solved: 582[Submit][St ...

  7. POJ3693 Maximum repetition substring [后缀数组 ST表]

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9458   Acc ...

  8. POJ1743 Musical Theme [后缀数组]

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 27539   Accepted: 9290 De ...

  9. 后缀数组(suffix array)详解

    写在前面 在字符串处理当中,后缀树和后缀数组都是非常有力的工具. 其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料. 其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现, ...

随机推荐

  1. HDU 3400

    一道很适合练习三分的题目三分套三分强不强 题意:给你平面上两条平行线段\(AB\)和\(CD\),一个人要从\(A\)走到\(D\),他在线段\(AB\)上的速度为\(P\),在\(CD\)上的速度为 ...

  2. java缓存技术的介绍

    一.什么是缓存1.Cache是高速缓冲存储器 一种特殊的存储器子系统,其中复制了频繁使用的数据以利于快速访问2.凡是位于速度相差较大的两种硬件/软件之间的,用于协调两者数据传输速度差异的结构,均可称之 ...

  3. [UWP 自定义控件]了解模板化控件(6):使用附加属性

    1. 基本需求 之前的ContentView2添加了PointerOver等效果,和TextBox等本来就有Header的控件放在一起反而变得鹤立鸡群. 为了解决这个问题,这次把ContentView ...

  4. Mvc_扩展@html

    HtmlHelper的一个实例,它被定义在System.Web.Mvc名称空间下的WebViewPage类,即它对于所有MVC页面都可用)建立好扩展方法后: @Html.CreateGanderRad ...

  5. 通过容器提交镜像(docker commit)以及推送镜像(docker push)笔记

    在本地创建一个容器后,可以依据这个容器创建本地镜像,并可把这个镜像推送到Docker hub中,以便在网络上下载使用. 查看镜像 [root@docker-test1 ~]# docker image ...

  6. Week3 关于“微软必应词典客户端”的案例分析

    第一部分  调研,评测 一.iphone客户端的bug挖掘: 1.在例句中点击单词或短语,如果这个时候点得稍微快了一点,关联相应的翻译时会出现混乱. 经过调查发现,这个bug应该是必应得一个全平台错误 ...

  7. Linux内核学习期末总结(网课)

    标签(空格分隔): 20135321余佳源 余佳源(原创作品转载请注明出处) <Linux内核分析> MOOC课程http://mooc.study.163.com/course/USTC ...

  8. warning C4996: 'strcpy': This function or variable may be unsafe.

    mkdir 写成  _mkdir strcpy 写成为 strcpy_s 或是在项目处右击-->属性-->C/C++-->预处理器-->在预处理器定义后添加";_CR ...

  9. 网络:LVS负载均衡原理

    LB集群的架构和原理很简单,就是当用户的请求过来时,会直接分发到Director Server上,然后它把用户的请求根据设置好的调度算法,智能均衡地分发到后端真正服务器(real server)上.为 ...

  10. [BUAA_SE_2017]第零次博客

    结缘计算机 你为什么选择计算机专业?你认为条件如何? 计算机是你喜欢的领域吗?是你擅长的领域吗? 说来也巧,高考选择专业时并不知道自己会这般喜欢计算机这个专业,却将其填在了北航的第一志愿. 第一次接触 ...