【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)
【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)
题面
题解
\(k\)很小,可以直接暴力多项式乘法和取模。
然后就是常系数齐次线性递推那套理论了,戳这里
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 1000000007
#define MAX 5000
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b)
{
int s=1;if(a==1)return 1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int n,k;
int tmp[MAX];
int a[MAX],h[MAX<<1];
void Multi(int *a,int *b,int n,int m,int *c)
{
for(int i=0;i<=n+m;++i)tmp[i]=0;
for(int i=0;i<=n;++i)
for(int j=0;j<=m;++j)
add(tmp[i+j],1ll*a[i]*b[j]%MOD);
for(int i=0;i<=n+m;++i)c[i]=tmp[i];
}
void Mod(int *a,int *b,int n,int m)
{
for(int i=n;i>=m;--i)
if(a[i])
{
int t=1ll*a[i]*fpow(b[m],MOD-2)%MOD;
for(int j=i;j>=i-m;--j)
add(a[j],MOD-1ll*t*b[m-i+j]%MOD);
}
}
int p[MAX],ans[MAX];
void Solve(int b,int *mod,int K,int *ans)
{
int s[MAX];memset(s,0,sizeof(s));s[1]=ans[0]=1;
while(b)
{
if(b&1)Multi(ans,s,K-1,K-1,ans),Mod(ans,p,K+K-2,K);
Multi(s,s,K-1,K-1,s);Mod(s,p,K+K-2,K);
b>>=1;
}
}
int main()
{
n=read();k=read();
for(int i=1;i<=k;++i)a[i]=(read()%MOD+MOD)%MOD;
for(int i=0;i<k;++i)h[i]=(read()%MOD+MOD)%MOD;
p[k]=1;for(int i=1;i<=k;++i)p[k-i]=(MOD-a[i])%MOD;
Solve(n-k,p,k,ans);int Ans=0;
for(int i=k;i<k+k;++i)
for(int j=1;j<=k;++j)
add(h[i],1ll*a[j]*h[i-j]%MOD);
for(int i=0;i<k;++i)add(Ans,1ll*h[i+k]*ans[i]%MOD);
printf("%d\n",Ans);
return 0;
}
【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)的更多相关文章
- bzoj 4161 Shlw loves matrixI——常系数线性齐次递推
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4161 还是不能理解矩阵…… 关于不用矩阵理解的方法:https://blog.csdn.ne ...
- 常系数齐次线性递推 & 拉格朗日插值
常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...
- 【Luogu4723】线性递推(常系数齐次线性递推)
[Luogu4723]线性递推(常系数齐次线性递推) 题面 洛谷 题解 板子题QwQ,注意多项式除法那里每个多项式的系数,调了一天. #include<iostream> #include ...
- 【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)
这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k ...
- 【瞎讲】 Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18)
[背诵瞎讲] Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18) 看CSP看到一题"线性递推式",不会做,去问了问zsy怎么做,他并 ...
- BZOJ4161 常系数齐次线性递推
问了数竞的毛毛搞了一番也没太明白,好在代码蛮好写先记下吧. #include<bits/stdc++.h> using namespace std; ,mod=1e9+; int n,k, ...
- Re.常系数齐次递推
前言 嗯 我之前的不知道多少天看这个的时候到底在干什么呢 为什么那么.. 可能大佬们太强的缘故 最后仔细想想思路那么的emmm 不说了 要落泪了 唔唔唔 前置 多项式求逆 多项式除法/取模 常 ...
- 【BZOJ4944】[NOI2017]泳池(线性常系数齐次递推,动态规划)
[BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑 ...
- bzoj4161: Shlw loves matrixI
Description 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计 ...
随机推荐
- 在centos 7上安装BIMServer
下载bimserverwar-1.5.85.war https://github.com/opensourceBIM/BIMserver/releases mkdir -p /opt/bim cd / ...
- 清除EasyUi combotree下拉树的值
由于测试自带的$(“node”).combotree("clear');问题始终解决不了 最终方法: Hdata是JSON数据源, 在它动态加在成功之后(节点全部显示出来,并且可以选择)再清 ...
- 搭建SpringBoot+dubbo+zookeeper+maven框架(二)
上一篇文章是关于搭建SpringBoot+dubbo+zookeeper+maven框架的,但是里面的功能还不够完善,今天就日志管理方面做一些改善. 下了demo的网友可能会发现项目在启动时会有警告: ...
- Scala学习(七)---包和引入
包和引入 摘要: 在本篇中,你将会了解到Scala中的包和引入语句是如何工作的.相比Java不论是包还是引入都更加符合常规,也更灵活一些.本篇的要点包括: 1. 包也可以像内部类那样嵌套 2. 包路径 ...
- GATT服务搜索流程(二)
关于bta_dm_cb.p_sec_cback,这里我们之前已经分析过,他就是bte_dm_evt ,最终调用的函数btif_dm_upstreams_evt : static void btif_d ...
- hibernate 解决 java.lang.NoClassDefFoundError: org/hibernate/cfg/Configuration
参考:https://stackoverflow.com/questions/9851528/java-lang-noclassdeffounderror-org-hibernate-cfg-conf ...
- TestSushu1
https://github.com/jzjaerui/Individual-Project/blob/master/TestSushu1 <程序设计实践I> 题目: ...
- 简话h5唤起本地app
在没接触这个功能之前,查询各种文档后也只是似懂非懂,做过之后,发现其实很简单,简言之就是通过一个iframe或者a标签来跳转app端提供的URL schema(至于这个URL schema的组成格式, ...
- 菜鸟教程--AJAX
一.简介1.AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术.2.AJAX = 异步 JavaScript 和 XML.3.通过在后台与服务器进行少量数据交换,AJAX 可以使网 ...
- 设备 VMnet0 上的网桥当前未运行。此虚拟机无法与主机或网络中的其他计算机通信。
http://www.cnblogs.com/baihuitestsoftware/articles/4223552.html 因为试用Windows10教育版下的Docker打开过Hyper-V,虽 ...