【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)

题面

BZOJ

题解

\(k\)很小,可以直接暴力多项式乘法和取模。

然后就是常系数齐次线性递推那套理论了,戳这里

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 1000000007
#define MAX 5000
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b)
{
int s=1;if(a==1)return 1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int n,k;
int tmp[MAX];
int a[MAX],h[MAX<<1];
void Multi(int *a,int *b,int n,int m,int *c)
{
for(int i=0;i<=n+m;++i)tmp[i]=0;
for(int i=0;i<=n;++i)
for(int j=0;j<=m;++j)
add(tmp[i+j],1ll*a[i]*b[j]%MOD);
for(int i=0;i<=n+m;++i)c[i]=tmp[i];
}
void Mod(int *a,int *b,int n,int m)
{
for(int i=n;i>=m;--i)
if(a[i])
{
int t=1ll*a[i]*fpow(b[m],MOD-2)%MOD;
for(int j=i;j>=i-m;--j)
add(a[j],MOD-1ll*t*b[m-i+j]%MOD);
}
}
int p[MAX],ans[MAX];
void Solve(int b,int *mod,int K,int *ans)
{
int s[MAX];memset(s,0,sizeof(s));s[1]=ans[0]=1;
while(b)
{
if(b&1)Multi(ans,s,K-1,K-1,ans),Mod(ans,p,K+K-2,K);
Multi(s,s,K-1,K-1,s);Mod(s,p,K+K-2,K);
b>>=1;
}
}
int main()
{
n=read();k=read();
for(int i=1;i<=k;++i)a[i]=(read()%MOD+MOD)%MOD;
for(int i=0;i<k;++i)h[i]=(read()%MOD+MOD)%MOD;
p[k]=1;for(int i=1;i<=k;++i)p[k-i]=(MOD-a[i])%MOD;
Solve(n-k,p,k,ans);int Ans=0;
for(int i=k;i<k+k;++i)
for(int j=1;j<=k;++j)
add(h[i],1ll*a[j]*h[i-j]%MOD);
for(int i=0;i<k;++i)add(Ans,1ll*h[i+k]*ans[i]%MOD);
printf("%d\n",Ans);
return 0;
}

【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)的更多相关文章

  1. bzoj 4161 Shlw loves matrixI——常系数线性齐次递推

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4161 还是不能理解矩阵…… 关于不用矩阵理解的方法:https://blog.csdn.ne ...

  2. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

  3. 【Luogu4723】线性递推(常系数齐次线性递推)

    [Luogu4723]线性递推(常系数齐次线性递推) 题面 洛谷 题解 板子题QwQ,注意多项式除法那里每个多项式的系数,调了一天. #include<iostream> #include ...

  4. 【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)

    这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k ...

  5. 【瞎讲】 Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18)

    [背诵瞎讲] Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18) 看CSP看到一题"线性递推式",不会做,去问了问zsy怎么做,他并 ...

  6. BZOJ4161 常系数齐次线性递推

    问了数竞的毛毛搞了一番也没太明白,好在代码蛮好写先记下吧. #include<bits/stdc++.h> using namespace std; ,mod=1e9+; int n,k, ...

  7. Re.常系数齐次递推

    前言 嗯   我之前的不知道多少天看这个的时候到底在干什么呢 为什么那么..  可能大佬们太强的缘故 最后仔细想想思路那么的emmm 不说了  要落泪了 唔唔唔 前置 多项式求逆 多项式除法/取模 常 ...

  8. 【BZOJ4944】[NOI2017]泳池(线性常系数齐次递推,动态规划)

    [BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑 ...

  9. bzoj4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计 ...

随机推荐

  1. 洛谷 P4409 [ZJOI2006] 皇帝的烦恼

    题目链接-> OVO 题解: 很久没有写博客了,可能是因为最近太颓废了吧. 刚刚考完期末考试,无比期盼早点外出学习,不要面对成绩,害怕. #include <cstdio> #inc ...

  2. 面试2——java基础3

    21.Http请求的get和post的区别? get:从 指定的资源请求数据.请注意,查询字符串(名称/值对)是在 GET 请求的 URL 中发送的 post:向指定的资源提交要被处理的数据.请注意, ...

  3. 【福利】送Scala语言入门视频学习资料

    没有套路真的是送!! 想要学好大数据,scala语言是必不可少的,spark和kafka等大数据重要组件都是用scala写的,想要彻底搞懂这些组件是如何运作的必须得看源码,而学习scala是看源码的必 ...

  4. D. Too Easy Problems

    链接 [http://codeforces.com/group/1EzrFFyOc0/contest/913/problem/D] 题意 给你n个题目,考试时间T,对于每个问题都有一个ai,以及解决所 ...

  5. #个人博客作业Week3——必应词典案例分析

    第一部分 调研以及评测 一.BUG分析   1. 翻译部分原文语言检测部分 1) 症状: 当选择原文语言是简体中文时,输入英文查询,程序不报错,继续翻译,选择其他类型语言也是如此. 且如果出现这种情况 ...

  6. Scrum Meeting NO.10

    Scrum Meeting No.10 1.会议内容 2.任务清单 徐越 序号 近期的任务 进行中 已完成 1 "我"回答过的问题 -- 界面 √ 2 "问题" ...

  7. Linux内核分析 读书笔记 (第七章)

    第七章 链接 1.链接是将各种代码和数据部分收集起来并组合成为一个单一文件的过程,这个文件可被加载(或被拷贝)到存储器并执行. 2.链接可以执行于编译时,也就是在源代码被翻译成机器代码时:也可以执行于 ...

  8. Sprint冲刺第二阶段之6---10天(下)

    11月24号——12月8号,这一个时间段学校的电压不是很稳定,时不时会断电,为了冲刺的完整性,我们商量决定把这一时间段做的事情写成一个连贯的小日记.然后统一在整个时间段一起发出来. 经过一个阶段的努力 ...

  9. 第三个Sprint冲刺第四天(燃尽图)

  10. Maven的课堂笔记1

    1 什么是maven? Maven是一个跨平台的项目管理工具,主要用于基于java平台的项目构建,依赖管理. Clean  compile  test  package  install   run ...