题目链接

51nod1236

题解

用特征方程求得斐波那契通项:

\[f(n) = \frac{(\frac{1 + \sqrt{5}}{2})^{n} - (\frac{1 - \sqrt{5}}{2})^{n}}{\sqrt{5}}
\]

那么

\[\begin{aligned}
ans &= \sum\limits_{i = 1}^{n} (\frac{(\frac{1 + \sqrt{5}}{2})^{i} - (\frac{1 - \sqrt{5}}{2})^{i}}{\sqrt{5}})^{k} \\
&= (\frac{1}{\sqrt{5}})^{k}\sum\limits_{i = 1}^{n} ((\frac{1 + \sqrt{5}}{2})^{i} - (\frac{1 - \sqrt{5}}{2})^{i})^{k} \\
&= (\frac{1}{\sqrt{5}})^{k}\sum\limits_{i = 1}^{n} \sum\limits_{j = 0}^{k}{k \choose j}(-1)^{k - j}(\frac{1 + \sqrt{5}}{2})^{ij}(\frac{1 - \sqrt{5}}{2})^{i(k - j)} \\
&= (\frac{1}{\sqrt{5}})^{k}\sum\limits_{j = 0}^{k}{k \choose j}(-1)^{k - j}\sum\limits_{i = 1}^{n} (\frac{1 + \sqrt{5}}{2})^{ij}(\frac{1 - \sqrt{5}}{2})^{i(k - j)} \\
&= (\frac{1}{\sqrt{5}})^{k}\sum\limits_{j = 0}^{k}{k \choose j}(-1)^{k - j}\sum\limits_{i = 1}^{n} ((\frac{1 + \sqrt{5}}{2})^{j}(\frac{1 - \sqrt{5}}{2})^{k - j})^{i}
\end{aligned}
\]

后面用等比数列求和即可

复杂度\(O(klogn)\)

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 0x3f3f3f3f,P = 1000000009;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
const LL s5 = 383008016;
LL N,K,fac[maxn],inv[maxn],fv[maxn],v1[maxn],v2[maxn];
void init(){
fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
v1[0] = v2[0] = 1;
for (int i = 2; i < maxn; i++){
fac[i] = fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = fv[i - 1] * inv[i] % P;
}
v1[1] = (1 + s5) * inv[2] % P; v2[1] = ((1 - s5) % P + P) % P * inv[2] % P;
for (int i = 2; i < maxn; i++){
v1[i] = v1[i - 1] * v1[1] % P;
v2[i] = v2[i - 1] * v2[1] % P;
}
}
inline LL qpow(LL a,LL b){
LL re = 1; a %= P;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) re = re * a % P;
return re;
}
inline LL Inv(LL a){
if (a < maxn) return inv[a];
return qpow(a,P - 2);
}
inline LL C(LL n,LL m){
if (m > n) return 0;
return fac[n] * fv[m] % P * fv[n - m] % P;
}
int main(){
init();
int T = read();
while (T--){
N = read(); K = read(); LL ans = 0;
for (int j = 0; j <= K; j++){
LL t,tmp;
t = v1[j] * v2[K - j] % P;
tmp = t == 1 ? N % P : ((qpow(t,N + 1) - t) % P + P) % P * Inv(t - 1) % P;
tmp = tmp * C(K,j) % P;
if ((K - j) & 1) ans = (ans + P - tmp) % P;
else ans = (ans + tmp) % P;
}
printf("%lld\n",ans * qpow(s5,K * (P - 2)) % P);
}
return 0;
}

51nod1236 序列求和 V3 【数学】的更多相关文章

  1. 51nod1236 序列求和 V3

    这题炒鸡简单,只要第一步想对了后面顺风顺水QWQ(然鹅我没想到) 前置芝士: 斐波那契数列通项公式 等比数列求和公式 二项式定理 这题要求的就是 \(\sum_{i=1}^n Fib(i)^k\) , ...

  2. [51nod1236] 序列求和 V3(斐波那契数列)

    题面 传送门 题解 把求和的柿子用斐波那契数列的通项公式展开 \[ \begin{aligned} Ans &=\sum\limits_{i = 1}^{n} \left(\frac{(\fr ...

  3. 51nod_1236_序列求和 V3 _组合数学

    51nod_1236_序列求和 V3 _组合数学 Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2).Fib(0) = 0, Fib(1) = 1. (1, ...

  4. HDU 5358 First One 求和(序列求和,优化)

    题意:给定一个含n个元素的序列,求下式子的结果.S(i,j)表示为seq[i...j]之和.注:对于log20可视为1.数据量n<=105. 思路:即使能够在O(1)的时间内求得任意S,也是需要 ...

  5. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  6. 51nod 1258 序列求和 V4

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4  基准时间限制:8 秒 空间限制:131 ...

  7. 【51Nod1258】序列求和V4(FFT)

    [51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间 ...

  8. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  9. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

随机推荐

  1. 第一章:模型层model layer -- Django从入门到精通系列教程

    该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. 题外话: Django的教程写到这里,就进入 ...

  2. zjoi2018 day1游记

    咕咕咕 upd:看见有人贴上zhihu的问题,那个我早就看到了... 谴责一番题主 @gzy_cjoier 阅读量马上700没想到吧 既然这么火我挂个广告吧 永别,OI 听说有人催更??

  3. High-level structure of a simple compiler高級結構的簡單編譯器

    1.lexical analysis,which analyzes the character string presented to it and divides it up into tokens ...

  4. CentOS6.9下升级默认的OpenSSH操作记录(升级到OpenSSH_7.6p1)

    近期对IDC机房服务器做了一次安全漏洞扫描,漏扫结果显示服务器的OpenSSH版本太低(CentOS6默认是OpenSSH_5.3p1),存在漏洞隐患,安全部门建议升级到OpenSSH_7.6p1.升 ...

  5. 分布式监控系统Zabbix-3.0.3-完整安装记录(3)-监控nginx,php,memcache,Low-level discovery磁盘IO

    前段时间在公司IDC服务器上部署了zabbix3.0.3监控系统,除了自带的内存/带宽/CPU负载等系统资源监控模板以及mysql监控模板外,接下来对诸如nginx.php.memcache.磁盘IO ...

  6. Dubbo原理和源码解析之“微内核+插件”机制

    github新增仓库 "dubbo-read"(点此查看),集合所有<Dubbo原理和源码解析>系列文章,后续将继续补充该系列,同时将针对Dubbo所做的功能扩展也进行 ...

  7. 变量 var &函数new

    声明变量 变量:变量是存储信息的容器,创建变量通常称为"声明"变量 变量必须以字母开头(小驼峰式myName): 变量也能以 $ 和 _ 符号开头(不过我们不推荐这么做): 变量名 ...

  8. Linux内核分析-创建新进程的过程

    分析Linux内核创建一个新进程的过程 task_struct结构体分析 struct task_struct{ volatile long state; //进程的状态 unsigned long ...

  9. Linux内核分析 读书笔记 (第四章)

    第四章 进程调度 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间.进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统.只有通过调度程序的合理调度,系统资源才能最大限 ...

  10. B01-java学习-阶段2-面向对象

    对象内存分析 构造方法 类的深入解释 预定义类型和自定义类型深入分析和解释 预定义类源码的查看 预定义类和自定义类的对比 跨过类中使用自定义类型作为属性类型的门槛 构造方法的定义和执行过程 编译器提供 ...