链接:https://www.nowcoder.com/acm/contest/140/A
来源:牛客网

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld

题目描述

White Cloud is exercising in the playground.
White Cloud can walk 1 meters or run k meters per second.
Since White Cloud is tired,it can't run for two or more continuous seconds.
White Cloud will move L to R meters. It wants to know how many different ways there are to achieve its goal.
Two ways are different if and only if they move different meters or spend different seconds or in one second, one of them walks and the other runs.

输入描述:

The first line of input contains 2 integers Q and k.Q is the number of queries.(Q<=100000,2<=k<=100000)
For the next Q lines,each line contains two integers L and R.(1<=L<=R<=100000)

输出描述:

For each query,print a line which contains an integer,denoting the answer of the query modulo 1000000007.

输入例子:
3 3
3 3
1 4
1 5
输出例子:
2
7
11

-->

示例1

输入

复制

3 3
3 3
1 4
1 5

输出

2
7
11 思路分析:
本题背景抛开,其实就是一个L到R区间内的一个数可以拆成多少种1和K两个数的和
本题最开始想用排列组合做,因为K的不同位置和不同个数。。。引起不同种类,后来发现需要求组合数1-100000,这明显是不切实际的。。。
换种思路:其实用DP的思想想一想,每个状态都是上面两个状态传来,分别是DP[i]=DP[i-1]+DP[i-K],但是不要着急。。。很明显题意给了一个限制条件,不能连续的跑
我们可以用一个DP[i][3]来表示各个状态
首先DP[i][0]代表走路到这个位置
DP[i][1]代表跑步到这个位置
DP[i][2]代表到这个位置的所有种类
这样我们就可以写出转移方程
DP[i][0]=DP[i-1][2]
DP[i][1]=DP[i-k][0]
DP[i][2]=DP[i][0]+DP[i][1]
当然有大神找规律得出这个动态转移方程
DP[i]=DP[i-1]+DP[i-K-1]
是不是很6???仔细想想其实也是对的,我们由于不能直接从DP[i-K]因为不能连续的跑步,我们知道DP[i-K-1]肯定是走路到DP[i-k]那么其实直接用DP[i-K-1]
就好了,最后前缀和数保存就行
最后一定要注意取模的地方。。。
(a+b) mod p = (a mod p + b mod p) mod p 
(a*b) mod p = ((a mod p) * (b mod p)) mod p 
(a-b) mod p = ((a mod p)-(b mod p) + p) mod p 
所以取模应该是
ans=(DP[r]-DP[l-1]+mod)%mod
代码如下
#include<iostream>
#include<string.h>
#include<stdio.h>
#define ll long long
using namespace std;
const int N = +;
const int mod = ;
ll dp[N][];
ll sum[N];
int main(){
int q,k;
while(~scanf("%d%d",&q,&k)){
sum[]=;
dp[][]=;
dp[k][]=;
dp[][]=;
for (int i=;i<=;i++){
dp[i][]=dp[i-][];
if(i-k>=){
dp[i][]=dp[i-k][];
}
dp[i][]=(dp[i][]+dp[i][])%mod;
sum[i]=(sum[i-]+dp[i][])%mod;
}
int l,r;
ll ans=;
for(int i=;i<=q;i++){
scanf("%d%d",&l,&r);
ans=(sum[r]%mod-sum[l-]+mod)%mod;
printf("%lld\n",ans);
}
}
return ;
}


牛客多校第二场A run(基础DP)的更多相关文章

  1. 2019牛客多校第二场 A Eddy Walker(概率推公式)

    2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...

  2. run (牛客多校第二场)计数DP

    链接:https://www.nowcoder.com/acm/contest/140/A来源:牛客网 题目描述 White Cloud is exercising in the playground ...

  3. 2019牛客多校第一场E ABBA(DP)题解

    链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...

  4. 2019牛客多校第二场H-Second Large Rectangle

    Second Large Rectangle 题目传送门 解题思路 先求出每个点上的高,再利用单调栈分别求出每个点左右两边第一个高小于自己的位置,从而而得出最后一个大于等于自己的位置,进而求出自己的位 ...

  5. 2019年牛客多校第二场 H题Second Large Rectangle

    题目链接 传送门 题意 求在\(n\times m\)的\(01\)子矩阵中找出面积第二大的内部全是\(1\)的子矩阵的面积大小. 思路 处理出每个位置往左连续有多少个\(1\),然后对每一列跑单调栈 ...

  6. [2019牛客多校第二场][G. Polygons]

    题目链接:https://ac.nowcoder.com/acm/contest/882/G 题目大意:有\(n\)条直线将平面分成若干个区域,要求处理\(m\)次询问:求第\(q\)大的区域面积.保 ...

  7. 第二大矩阵面积--(stack)牛客多校第二场-- Second Large Rectangle

    题意: 给你一幅图,问你第二大矩形面积是多少. 思路: 直接一行行跑stack求最大矩阵面积的经典算法,不断更新第二大矩形面积,注意第二大矩形可能在第一大矩形里面. #define IOS ios_b ...

  8. 2019 牛客多校第二场 H Second Large Rectangle

    题目链接:https://ac.nowcoder.com/acm/contest/882/H 题目大意 给定一个 n * m 的 01 矩阵,求其中第二大的子矩阵,子矩阵元素必须全部为 1.输出其大小 ...

  9. 2019牛客多校第二场H题(悬线法)

    把以前的题补补,用悬线求面积第二大的子矩形.我们先求出最大子矩阵的面积,并记录其行三个方向上的悬线长度.然后排除这个矩形,记得还得特判少一行或者少一列的情况 #include <bits/std ...

随机推荐

  1. 5.3Python函数(三)

    目录 目录 前言 (一)装饰器 ==1.简单的装饰器== ==2.修饰带参数函数的装饰器== ==3.修饰带返回值函数的装饰器== ==4.自身带参数的装饰器== (二)迭代器 (三)生成器 ==1. ...

  2. Linux 小知识翻译 - 「路径设置」

    这次聊聊路径的使用,这里的路径是「命令搜索路径」的简称. 在Linux上执行命令的时候,本来是需要命令的所在位置的绝对路径的,就像「/usr/bin/passwd」这样. 但是,对于经常使用的命令,如 ...

  3. SSM框架下使用websocket实现后端发送消息至前端

    本篇文章本人是根据实际项目需求进行书写的第一版,里面有些内容对大家或许没有用,但是核心代码本人已对其做了红色标注.文章讲解我将从maven坐标.HTML页面.js文件及后端代码一起书写. 一.mave ...

  4. mac系统如何在当前目录下打开终端

    给大家推荐一个好用的终端工具 Go2Shell:https://itunes.apple.com/cn/app/go2shell/id445770608?mt=12 在没有这个工具之前 找了好多在当前 ...

  5. CefSharp的一些初始化操作

    if (!CefSharp.Cef.IsInitialized) { var setting = new CefSharp.CefSettings { Locale = "zh-CN&quo ...

  6. 使用POI读写Word doc文件

    使用POI读写word doc文件 目录 1     读word doc文件 1.1     通过WordExtractor读文件 1.2     通过HWPFDocument读文件 2     写w ...

  7. (四) 天猫精灵接入Home Assistant-ESP-WIFI模块通过mqtt协议接入HASS

    总过程 1 ESP8266上电后,初始化 连接MQTT服务器 发布自身配置信息----hass自动发现该设备 订阅hass的命令话题---接收命令 发布hass的状态话题---返回自身状态 2 ESP ...

  8. MVC知识点记录

    _Layout.cshtmlRenderSectionsection 分部页的使用@Html.Partial Html.RenderPartial与 Html.RenderAction的 return ...

  9. mascara-2(MetaMask/mascara本地实现)-连接线上钱包

    https://github.com/MetaMask/mascara (beta) Add MetaMask to your dapp even if the user doesn't have t ...

  10. 素数判断-----埃氏筛法&欧拉筛法

    埃氏筛法 /* |埃式筛法| |快速筛选素数| |15-7-26| */ #include <iostream> #include <cstdio> using namespa ...