[模板][P4238]多项式求逆
NTT多项式求逆模板,详见代码
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=5e5+5,mod=998244353,G=3,Gi=332748118;
int n,l,lim=1,a[mxn],b[mxn],c[mxn],r[mxn];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline int chkmax(int &x,int y) {if(x<y) x=y;}
inline int chkmin(int &x,int y) {if(x>y) x=y;}
struct ed {
int to,nxt;
}t[mxn<<1];
int qpow(int a,int b)
{
int res=1,base=a;
while(b) {
if(b&1) res=1ll*res*base%mod;
base=1ll*base*base%mod;
b>>=1;
}
return res;
}
void NTT(int *p,int opt)
{
for(int i=0;i<lim;++i)
if(i<r[i]) swap(p[i],p[r[i]]);
for(int mid=1;mid<lim;mid<<=1) {
int wn=qpow(opt==1?G:Gi,(mod-1)/(mid<<1));
for(int len=mid<<1,j=0;j<lim;j+=len) {
int w=1;
for(int k=0;k<mid;++k,w=1ll*w*wn%mod) {
int x=p[j+k],y=1ll*w*p[j+mid+k]%mod;
p[j+k]=(x+y)%mod; p[j+mid+k]=(x-y+mod)%mod;
}
}
}
}
void solve(int deg,int *a,int *b)
{
if(deg==1) {b[0]=qpow(a[0],mod-2); return ;}
solve((deg+1)>>1,a,b); lim=1,l=0;
while(lim<=2*deg) lim<<=1,++l;
for(int i=0;i<lim;++i)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<deg;++i) c[i]=a[i];
for(int i=deg;i<lim;++i) c[i]=0;
NTT(b,1); NTT(c,1);
for(int i=0;i<lim;++i)
b[i]=1ll*(2ll-1ll*c[i]*b[i]%mod+mod)%mod*b[i]%mod;
NTT(b,-1); int inv=qpow(lim,mod-2);
for(int i=0;i<lim;++i) b[i]=1ll*b[i]*inv%mod;
for(int i=deg;i<lim;++i) b[i]=0;
}
int main()
{
n=read();
for(int i=0;i<n;++i) a[i]=read();
solve(n,a,b);
for(int i=0;i<n;++i) printf("%d ",b[i]);
return 0;
}
[模板][P4238]多项式求逆的更多相关文章
- 洛谷P4238【模板】多项式求逆
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...
- 2018.12.30 洛谷P4238 【模板】多项式求逆
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...
- P4238 【模板】多项式求逆
思路 多项式求逆就是对于一个多项式\(A(x)\),求一个多项式\(B(x)\),使得\(A(x)B(x) \equiv 1 \ (mod x^n)\) 假设现在多项式只有一项,显然\(B(x)\)的 ...
- [洛谷P4238]【模板】多项式求逆
题目大意:多项式求逆 题解:$ A^{-1}(x) = (2 - B(x) * A(x)) \times B(x) \pmod{x^n} $ ($B(x)$ 为$A(x)$在$x^{\lceil \d ...
- LG4238 【【模板】多项式求逆】
前言 学习了Great_Influence的递推实现,我给大家说一下多项式求逆严格的边界条件,因为我发现改动一些很小的边界条件都会使程序出错.怎么办,背代码吗?背代码是不可能,这辈子都不会背代码的.理 ...
- 洛谷P4239 【模板】多项式求逆(加强版)(多项式求逆)
传送门 咱用的是拆系数\(FFT\)因为咱真的不会三模数\(NTT\)-- 简单来说就是把每一次多项式乘法都改成拆系数\(FFT\)就行了 如果您还不会多项式求逆的左转->这里 顺带一提,因为求 ...
- P4238 【模板】多项式求逆 ntt
题意:求多项式的逆 题解:多项式最高次项叫度deg,假设我们对于多项式\(A(x)*B(x)\equiv 1\),已知A,求B 假设度为n-1,\(A(x)*B(x)\equiv 1(mod x^{\ ...
- luoguP4238 【模板】多项式求逆 NTT
Code: #include <bits/stdc++.h> #define N 1000010 #define mod 998244353 #define setIO(s) freope ...
- luogu P4238 多项式求逆 (模板题、FFT)
手动博客搬家: 本文发表于20181125 13:21:46, 原地址https://blog.csdn.net/suncongbo/article/details/84485718 题目链接: ht ...
随机推荐
- oracle 备份脚本
本文是一个shell脚本.主要用于Oracle 数据库备份.默认情况下,在周一晚上进行全备.其他时间进行累积增量备份. 使用方法: 假如脚本保存名为: oracle_backup.sh 使用方法为 o ...
- python 利用split读取文本文件中每一行的数字并保存至相应文件夹
import re from numpy import * def getStr(file_path,file_path1): fp = open(file_path, 'r') op = open( ...
- gitlab原理
GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的web服务. 其实,说直白点写,他就是个git服务器,和github差不多,只不过,这个gitlab可 ...
- chart API笔记
1. 参数说明 http://chart.apis.google.com/chart? chs=250x100 &chd=t:60,40 &cht=p3 &chl=Hello| ...
- Oracle数据库表索引失效,解决办法:修改Oracle数据库优化器模式
ALTER SYSTEM SET OPTIMIZER_MODE=RULE scope=both; 其他可以选择的模式还有ALL_ROWS/CHOOSE/FIRST_ROWS/ALL_ROWS. 应用系 ...
- mysql 查询结果中增加序号
) as rownum,person_id from t_base_person
- 铺放骨牌 uva11270
题解: 插头dp裸题 没什么好说的啊就是n个二进制位表示状态 相比原先就是用2n个二进制位表示状态 蓝书上后面几题插头dp都挺烦的啊... 代码:
- 【译】你应该了解的JavaScript数组方法
让我们来做一个大胆的声明:for循环通常是无用的,而且还导致代码难以理解.当涉及迭代数组.查找元素.或对其排序或者你想到的任何东西,都可能有一个你可以使用的数组方法. 然而,尽管这些方法很有用,但是其 ...
- Get与Post区别小结
Get:是以实体的方式得到由请求Url所指定资源的信息,如果请求Url只是一个数据产生过程,那么最终要在实体中返回的是处理过程的结果所指向的资源,而不是处理过程的描述. Post:是用来向 ...
- machinekey生成工具 v1.0 官方最新版
http://www.33lc.com/soft/66056.html 电信下载 广东电信下载 厦门电信下载 湖北电信下载 江苏电信下载 网通下载 陕西网通下载 山东网通下载 甘肃网通下载 山西网通下 ...