sklearn LDA降维算法

LDA(Linear Discriminant Analysis)线性判断别分析,可以用于降维和分类。其基本思想是类内散度尽可能小类间散度尽可能大,是一种经典的监督式降维/分类技术。

sklearn代码实现

#coding=utf-8

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import numpy as np def main():
iris = datasets.load_iris() #典型分类数据模型
#这里我们数据统一用pandas处理
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['class'] = iris.target #这里只取两类
# data = data[data['class']!=2]
#为了可视化方便,这里取两个属性为例
X = data[data.columns.drop('class')]
Y = data['class'] #划分数据集
X_train, X_test, Y_train, Y_test =train_test_split(X, Y)
lda = LinearDiscriminantAnalysis(n_components=2)
lda.fit(X_train, Y_train) #显示训练结果
print lda.means_ #中心点
print lda.score(X_test, Y_test) #score是指分类的正确率
print lda.scalings_ #score是指分类的正确率 X_2d = lda.transform(X) #现在已经降到二维X_2d=np.dot(X-lda.xbar_,lda.scalings_)
#对于二维数据,我们做个可视化
#区域划分
lda.fit(X_2d,Y)
h = 0.02
x_min, x_max = X_2d[:, 0].min() - 1, X_2d[:, 0].max() + 1
y_min, y_max = X_2d[:, 1].min() - 1, X_2d[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = lda.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) #做出原来的散点图
class1_x = X_2d[Y==0,0]
class1_y = X_2d[Y==0,1]
l1 = plt.scatter(class1_x,class1_y,color='b',label=iris.target_names[0])
class1_x = X_2d[Y==1,0]
class1_y = X_2d[Y==1,1]
l2 = plt.scatter(class1_x,class1_y,color='y',label=iris.target_names[1])
class1_x = X_2d[Y==2,0]
class1_y = X_2d[Y==2,1]
l3 = plt.scatter(class1_x,class1_y,color='r',label=iris.target_names[2]) plt.legend(handles = [l1, l2, l3], loc = 'best') plt.grid(True)
plt.show() if __name__ == '__main__':
main()

测试结果

Means: #各类的中心点
[[ 5.00810811 3.41891892 1.44594595 0.23513514]
[ 6.06410256 2.80769231 4.32564103 1.33589744]
[ 6.61666667 2.97222222 5.63055556 2.02777778]]
Score: #对于测试集的正确率
0.973684210526
Scalings:
[[ 1.19870893 0.76465114]
[ 1.20339741 -2.46937995]
[-2.55937543 0.42562073]
[-2.77824826 -2.4470865 ]]
Xbar:
[ 5.89285714 3.0625 3.79375 1.19464286]
#X'=np.dot(X-lda.xbar_,lda.scalings_)默认的线性变化方程

sklearn LDA降维算法的更多相关文章

  1. 机器学习实战基础(二十):sklearn中的降维算法PCA和SVD(一) 之 概述

    概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提 ...

  2. 降维算法整理--- PCA、KPCA、LDA、MDS、LLE 等

    转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes 网上关于各种降维算法的资料参差不齐,同时大部分不提供源 ...

  3. 参考:菜菜的sklearn教学之降维算法.pdf!!

    PCA(主成分分析法) 1. PCA(最大化方差定义或者最小化投影误差定义)是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了.那么PCA的核心思想是什么呢? 例如D ...

  4. 四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

    四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映 ...

  5. ML: 降维算法-LDA

    判别分析(discriminant analysis)是一种分类技术.它通过一个已知类别的“训练样本”来建立判别准则,并通过预测变量来为未知类别的数据进行分类.判别分析的方法大体上有三类,即Fishe ...

  6. 【转】四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

    最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映 ...

  7. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  8. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  9. 用scikit-learn进行LDA降维

    在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结. 1. 对scikit-learn中LDA类概述 在scikit-le ...

随机推荐

  1. 最短路径算法之Dijkstra算法

    参考:<大话数据结构> 这是一个按照路径长度递增的次序产生最短路径的算法.它并不是一次求出源点到目标点的最短路径,而是一步步求出它们之间顶点的最短路径,过程中都是基于已经求出的最短路径的基 ...

  2. WARN Session 0x0 for server null, unexpected error, closing socket connection and attempting reconnect (org.apache.zookeeper.ClientCnxn) java.net.ConnectException: Connection refused

    1.启动kafka的脚本程序报如下所示的错误: [hadoop@slaver1 script_hadoop]$ kafka-start.sh start kafkaServer... [-- ::,] ...

  3. jQuery数字滚动(模拟网站人气、访问量递增)原创

    插件描述:实现数字上下滚动,模拟网站人气.访问量递增的动画效果,兼容性如下: 使用方法 $(el).runNum(val,params);   参数详解 val:数值型(默认70225800): pa ...

  4. JS 中 ~~符号

    它被用作一个更快的替代 Math.floor() . 参考:http://rocha.la/JavaScript-bitwise-operators-in-practice

  5. yum安装Docker及入门使用

    一.安装 1.配置yum源 # vim /etc/yum.repos.d/docker.repo [dockerrepo] name=Docker Repository baseurl=https:/ ...

  6. 【BZOJ2560】串珠子

    题解: 跟n个点有标号的无向连通图个数几乎一模一样 直接上代码了 代码: #include <bits/stdc++.h> using namespace std; #define ll ...

  7. Azure附加新磁盘,差点掉进去的那个坑,注意临时数据盘

    接今早的mysql问题,最终原因是mysql数据库的数据库文件以及pid丢失,当我还纳闷为什么丢失的情况下 我研究了下Azure云平台的数据磁盘原理,在Azure下,新建vm(centos)后只会提供 ...

  8. 【转】PropertyGrid控件中的多级显示

    运行效果: 解决方案: MainForm.cs public partial class MainForm : Form { public MainForm() { InitializeCompone ...

  9. ES6新特性:使用export和import实现模块化(转载)

    在ES6前, 前端就使用RequireJS或者seaJS实现模块化, requireJS是基于AMD规范的模块化库,  而像seaJS是基于CMD规范的模块化库,  两者都是为了为了推广前端模块化的工 ...

  10. 51Nod1601 完全图的最小生成树计数 Trie Prufer编码

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1601.html 题目传送门 - 51Nod1601 题意 题解 首先我们考虑如何求答案. 我们将所有 ...