BZOJ1266 AHOI2006上学路线(最短路+最小割)
求出最短路后找出可能在最短路上的边,显然割完边后我们需要让图中这样的边无法构成1到n的路径,最小割即可,非常板子。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 510
#define M 250000
#define inf 2000000000
int n,m,p[N],d[N],t=;
bool flag[N];
struct data{int to,nxt,len,cost;
}edge[M];
void addedge(int x,int y,int z,int c){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].len=z,edge[t].cost=c,p[x]=t;}
namespace flow
{
int cur[N],q[N],d[N],ans=;
struct data{int to,nxt,cap,flow;
}edge[M];
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,p[y]=t;
}
bool bfs()
{
memset(d,,sizeof(d));d[]=;
int head=,tail=;q[]=;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[n];
}
int work(int k,int f)
{
if (k==n) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
ans+=work(,inf);
}
cout<<ans;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1266.in","r",stdin);
freopen("bzoj1266.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=m;i++)
{
int x=read(),y=read(),z=read(),c=read();
addedge(x,y,z,c);addedge(y,x,z,c);
}
memset(d,,sizeof(d));d[]=;
for (int i=;i<=n;i++)
{
int mn=;
for (int j=;j<=n;j++)
if (!flag[j]&&d[j]<d[mn]) mn=j;
flag[mn]=;
for (int j=p[mn];j;j=edge[j].nxt)
if (d[mn]+edge[j].len<d[edge[j].to]) d[edge[j].to]=d[mn]+edge[j].len;
}
cout<<d[n]<<endl;
t=-;memset(p,,sizeof(p));
for (int i=;i<=m;i++)
{
if (d[edge[i<<].to]+edge[i<<].len==d[edge[i*-].to])
flow::addedge(edge[i<<].to,edge[i*-].to,edge[i<<].cost);
if (d[edge[i*-].to]+edge[i*-].len==d[edge[i<<].to])
flow::addedge(edge[i*-].to,edge[i<<].to,edge[i<<].cost);
}
flow::dinic();
return ;
}
BZOJ1266 AHOI2006上学路线(最短路+最小割)的更多相关文章
- bzoj1266 [AHOI2006]上学路线route floyd+最小割
1266: [AHOI2006]上学路线route Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 2490 Solved: 898[Submit][S ...
- BZOJ1266 [AHOI2006]上学路线route Floyd 最小割 SAP
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1266 题意概括 一个无向图,第一问:从1~n的最短路. 第二问,删除价值总和最小的边,使得1~n的 ...
- 【BZOJ1266】[AHOI2006]上学路线route Floyd+最小割
[BZOJ1266][AHOI2006]上学路线route Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林 ...
- BZOJ 1266 上学路线(最短路+最小割)
给出n个点的无向图,每条边有两个属性,边权和代价. 第一问求1-n的最短路.第二问求用最小的代价删边使得最短路的距离变大. 对于第二问.显然该删除的是出现在最短路径上的边.如果我们将图用最短路跑一遍预 ...
- BZOJ 1266: [AHOI2006]上学路线route Floyd_最小割
十分简单的一道题. 图这么小,跑一边 Floyd 就得到第一问最短路径的答案. 考虑第二问怎么求:我们可以先将最短路径组成的图从原图中抽离出来,构成新图 $G$. 我们发现,只要 $G$ 的起点与终点 ...
- bzoj1266 [AHOI2006]上学路线route floyd建出最短路图+最小割
1266: [AHOI2006]上学路线route Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 2490 Solved: 898[Submit][S ...
- bzoj1266: [AHOI2006]上学路线route
最短路+最小割 首先如何使最短路变长?就是要每一条最短路都割一条边. 我们求出每个点到点1和点n的距离,就可以知道哪些边在最短路上(一开始没有想到求到0和n的距离,想用floyd,但是n=500,怕超 ...
- 【最短路】【spfa】【最小割】【Dinic】bzoj1266 [AHOI2006]上学路线route
原问题等价于断掉一些边,让原来所有的最短路全都无法联通S和T. 先求最短路,然后把在最短路上的边(dis[u[i]]+w[i]==dis[v[i]])加入新图里,跑最小割.显然. 注意是无向图. #i ...
- BZOJ1266 [AHOI2006]上学路线
Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林匹克竞赛小组才发现每天上学的乘车路线不一定是最优的. 可可: ...
随机推荐
- jquery中的选择器:has和:not的用法
这两个选择器可以帮助我们在选择父级和子孙之间关系的dom更从容~ <div><p><span>Hello</span></p></di ...
- CF535E Tavas and Pashmaks 单调栈、凸包
传送门 题意:有一场比赛,$N$个人参加.每个人有两种参数$a,b$,如果存在正实数$A,B$使得$\frac{A}{a_i} + \frac{B}{b_i}$在$i=x$处取得最大值(可以有多个最大 ...
- 一头雾水的"Follow The Pointer"
原文:一头雾水的"Follow The Pointer" 一头雾水的"Follow The Pointer" ...
- odoo11 外部数据导入方法2
前面有一篇文章分析了如何使用2个分开的文件分别将外部数据导入到odoo对应的系统当中,如之前所说,是存在缺点的,现在测试将所有数据放入一个文件中将主表与从表的数据一次性导入,这样可以很方便的利用odo ...
- [Oracle]为何Archivelog 没有马上被删除
[Oracle]为何Archivelog 没有马上被删除 客户设置了 Archivelog 的 deletion policy 是 CONFIGURE ARCHIVELOG DELETION POLI ...
- 如何用区块链技术解决信任问题?Fabric 架构深度解读
阿里妹导读:区块链技术,随着比特币的兴起而为大家所知.但是具体到技术本身,大家相对熟悉的几个词可能是“数据不可篡改”.“公开链”.“分布式数据”.“共识机制”等. 这篇文章将抛砖引玉,通过深度解读Hy ...
- 如何打造网站克隆、仿站工具(C#版)
前两天朋友叫我模仿一个网站,刚刚开始,我一个页面一个页面查看源码并复制和保存,花了我很多时间,一个字“累”,为了减轻工作量,我写了个网站“克隆工具”,一键克隆,比起人工操作, 效率提高了200%以上, ...
- HTTP Error 500.22 - Internal Server Error 错误解决方案
1. 首先进入IIS ,配置IIS 应用程序池的.Net Framework版本 2. 点击左侧应用程序池,再单机右侧设置,选择版本 3. 设置为经典模式 如若遇到以下错误: 解决方案:删除confi ...
- 分布式监控系统Zabbix-完整安装记录 -添加端口监控
对于进程和端口的监控,可以使用zabbix自带的key进行监控,只需要在server端维护就可以了,相比于nagios使用插件去监控的方式更为简单.下面简单介绍配置:监控端口zabbix监控端口使用如 ...
- 20135323符运锦----LINUX第三次实践:程序破解
程序破解 一.掌握NOP.JNE.JE.JMP.CMP汇编指令的机器码 ①NOP:NOP指令即"空指令".执行到NOP指令时,CPU什么也不做,仅仅当做一个指令执行过去并继续执行N ...