题目描述

奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <=N <= 250,000),编号为1..N。就像任何一个好游戏一样,这样的跳格子游戏也有奖励!第i个格子标有一个数字V_i(-2,000,000,000 <=V_i <= 2,000,000,000)表示这个格子的钱。奶牛们想看看最后谁能得到最多的钱。规则很简单: * 每个奶牛从0号格子出发。(0号格子在1号之前,那里没钱) * 她向N号格子进行一系列的跳跃(也可以不跳),每次她跳到的格子最多可以和前一 个落脚的格子差K格(1 <= K <= N)(比方说,当前在1号格,K=2, 可以跳到2号和3号格子) *在任何时候,她都可以选择回头往0号格子跳,直到跳到0号格子。另外,除了以上规则之外,回头跳的时候还有两条规则: *不可以跳到之前停留的格子。 *除了0号格子之外,她在回来的时候,停留的格子必须是恰巧过去的时候停留的某个格子的前一格(当然,也可以跳过某些过去时候停留的格子)。简单点说,如果i号格子是回来 停留的格子,i+1号就必须是过去停留的格子,如果i+1号格子是过去停留的格子,i号格子不一定要是回来停留的格子。(如果这里不太清楚的可以去看英文原文)她得到的钱就是所有停留过的格子中的数字的和,请你求出最多奶牛可以得到的钱数。 在样例中,K=2,一行5个格子。 一个合法的序列Bessie可以选择的是0[0], 1[0], 3[2], 2[1], 0[0]。(括号里的数表示钱数) 这样,可以得到的钱数为0+0+2+1+0 = 3。 如果Bessie选择一个序列开头为0, 1, 2, 3, ...,那么她就没办法跳回去了,因为她没办法再跳到一个之前没跳过的格子。序列0[0], 2[1], 4[-3], 5[4], 3[2], 1[0], 0[0]是最大化钱数的序列之一,最后的钱数为(0+1-3+4+2+0 = 4)。

输入

* 第1行 1: 两个用空格隔开的整数: N 和 K * 第2到N+1行: 第i+1行有一个整数: V_i

输出

* 第一行: 一个单个的整数表示最大的钱数是多少。

样例输入

5 2
0
1
2
-3
4

样例输出

4
OUTPUT DETAILS:
还有一种可能的最大化钱数的序列是: 0 2 4 5 3 1 0
 
考虑到题目叙述可能不太清楚,在这里大致说一下题目大意:奶牛要向前跳格子并在跳到某个格子后要向回跳最终跳回起点,每个格子有一个价值(有正有负),且向前跳时每次最多向前跳K个。在向回跳时每次同样最多跳k个且每次必须跳到去时跳的某个格子的前一个格子,每次跳的不能是去时的格子,求最大获得价值。
询问最大值,考虑贪心、搜索和dp,显然贪心是不行,数据范围搜索也不可过,所以自然想到dp。因为奶牛一定要回去,所以设的dp方程要保证奶牛能回去。因为去和回来所跳距离限制相同,所以去时从x跳到y,回来时一定能从y-1跳到x-1,再结合跳回来的规则不难想出f[i]表示去时当前跳到i且留下i-1作为回来的路所得到的最大价值。因为价值要尽可能大,所以一来一回自然要把i之前的所有正数都跳到,再处理出s[i]表示前i个数中所有正数的和,val[i]表示i点的价值。于是就得出了dp转移方程:
f[i]=max{f[j]+s[i-2]-s[j]}+val[i-1]+val[i],(i-K<=j<i-1)。因为回来时一定要走i-1,所以先把它加上。但答案可不是max{f[i]},因为对于f[i],我们留下了i-1作为回去时的落脚点,所以我们还可以把[i+1,i-1+K]中所有正数点走完,最后的结果就是max{f[i]+s[i-1+K]-s[i]}。因为f[i]的转移只和i,j有关所以可以斜率优化。
最后附上代码。
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
long long f[250010];
long long s[250010];
int v[250010];
int n,m;
int q[250010];
int l,r;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
if(v[i]>0)
{
s[i]=s[i-1]+v[i];
}
else
{
s[i]=s[i-1];
}
f[i]=-1ll<<60;
}
f[0]=0;
l=r=1;
for(int i=2;i<=n;i++)
{
while(l<=r&&q[l]<i-m)
{
l++;
}
f[i]=f[q[l]]+s[i-2]+v[i-1]+v[i]-s[q[l]];
while(l<=r&&f[q[r]]-s[q[r]]<f[i-1]-s[i-1])
{
r--;
}
q[++r]=i-1;
}
long long ans=s[m];
for(int i=1;i<=n;i++)
{
if(i+m-1<=n)
{
ans=max(ans,f[i]+s[i+m-1]-s[i]);
}
else
{
ans=max(ans,f[i]+s[n]-s[i]);
}
}
printf("%lld",ans);
}

BZOJ1915[USACO 2010 Open Gold 1.Cow Hopscotch]——DP+斜率优化的更多相关文章

  1. bzoj3939 【USACO 2015 FEB GOLD 】cow hopscotch

    Description 就像人类喜欢玩"跳房子"的游戏,农民约翰的奶牛已经发明了该游戏的一个变种自己玩.由于笨拙的动物体重近一吨打,牛跳房子几乎总是以灾难告终,但这是没有阻止奶牛几 ...

  2. BZOJ1785[USACO 2010 Jan Gold 3.Cow Telephones]——贪心

    题目描述 奶牛们建立了电话网络,这个网络可看作为是一棵无根树连接n(1 n 100,000)个节点,节点编号为1 .. n.每个节点可能是(电话交换机,或者电话机).每条电话线连接两个节点.第i条电话 ...

  3. BZOJ1916[USACO 2010 Open Gold 2.Water Slides]——DP+记忆化搜索

    题目描述 受到秘鲁的马丘比丘的新式水上乐园的启发,Farmer John决定也为奶牛们建 一个水上乐园.当然,它最大的亮点就是新奇巨大的水上冲浪.超级轨道包含 E (1 <= E <=15 ...

  4. Poj 2018 Best Cow Fences(分数规划+DP&&斜率优化)

    Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Description Farmer John's farm consists of a ...

  5. BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP

    题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...

  6. Usaco 2010 Dec Gold Exercise(奶牛健美操)

    /*codevs 3279 二分+dfs贪心检验 堆版本 re一个 爆栈了*/ #include<cstdio> #include<queue> #include<cst ...

  7. BZOJ1782[USACO 2010 Feb Gold 3.Slowing down]——dfs+treap

    题目描述 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1…N)从粮仓走向他的自己的牧场.牧场构成了一棵树,粮仓在1号牧场.恰好有N-1条道路直接连接着牧场, ...

  8. BZOJ1828[USACO 2010 Mar Gold 2.Barn Allocation]——贪心+线段树

    题目描述 输入 第1行:两个用空格隔开的整数:N和M * 第2行到N+1行:第i+1行表示一个整数C_i * 第N+2到N+M+1行: 第i+N+1行表示2个整数 A_i和B_i 输出 * 第一行: ...

  9. BZOJ1774[USACO 2009 Dec Gold 2.Cow Toll Paths]——floyd

    题目描述 跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费 ...

随机推荐

  1. Android PageAdapter翻译

    介绍:ViewPager和PagerAdapter结合使用 public abstract class PagerAdapter extends Object java.lang.Object     ...

  2. [07] 使用注解完成IOC配置

    1.扫描配置 之前使用的Spring的Bean管理都是通过xml的配置文件来操作的,在Spring3.0之后已经引入了注解形式,Spring可以在指定路径下进行扫描,寻找标注了@Component.@ ...

  3. 源码篇:Python 实战案例----银行系统

    import time import random import pickle import os class Card(object): def __init__(self, cardId, car ...

  4. c语言程序 第二例

    求5! # include <studio.h> int main(){ int i,t; t=1; i=2; while (i<=5){ t=t*i i=i+1 } printf( ...

  5. Sql Server插入数据并返回自增ID,@@IDENTITY,SCOPE_IDENTITY和IDENT_CURRENT的区别(转载)

    预备知识:SQL Server的IDENTITY关键字IDENTITY关键字代表的是一个函数,而不是identity属性.在access里边没有这个函数,所以在access不能用这个语句.语法:ide ...

  6. [Codeforces1137D]Cooperative Game

    [Codeforces1137D]Cooperative Game Tags:题解 题意 这是一道交互题. 给你一张下面这样的地图,由一条长为\(t\)的有向链和一个长为\(c\)的环构成. 现在你有 ...

  7. vue 路由拦截、axios请求拦截

    路由拦截 项目中,有些页面需要登录后才能进入,例如,在某页面A,用户在操作前需要先进入登录页(此时需要将上一页的地址(/survey/start)作为query存入login页面的地址中,如: htt ...

  8. 懒人小工具:T4生成实体类Model,Insert,Select,Delete以及导出Excel的方法

    由于最近公司在用webform开发ERP,用到大量重复机械的代码,之前写了篇文章,懒人小工具:自动生成Model,Insert,Select,Delete以及导出Excel的方法,但是有人觉得这种方法 ...

  9. Linux ugo 权限

    Linux 系统中文件的 ugo 权限是 Linux 进行权限管理的基本方式.本文将介绍 ugo 权限的基本概念.说明:本文的演示环境为 ubuntu 16.04. 文件的所有者和组 Linux 文件 ...

  10. 《Linux内核设计与实现》课本第四章学习总结

    进程调度 4.1 多任务 多任务操作系统就是能同时并发的交互执行多个进程的操作系统. 多任务系统分为两种: 抢占式多任务:Linux提供了抢占式的多任务模式,由调度程序来决定什么时候停止一个进程的运行 ...