The Chinese Postman Problem HIT - 2739(有向图中国邮路问题)
无向图的问题,如果每个点的度数为偶数,则就是欧拉回路,而对于一个点只有两种情况,奇数和偶数,那么就把都为奇数的一对点 连一条 边权为原图中这两点最短路的值 的边 是不是就好了
无向图中国邮路问题:

有向图的问题,如果每个点的入度和出度相同,则就是欧拉回路,而这个情况就多了,相同、入度少一、入度少俩·····、出度少1、出度少俩,
呐 如果我们把入度少的 和 出度少的连起来是不是就是欧拉回路了,比如说点x的出度为7,入度为3;点y的出度为2,入度为4;点z的出度为2,入度为4;
那么x是连点y还是点z,当然是先连距离最小的那个,假设是y,那么x <- y 连两条边之后,x入度为7,入度为5,y的入度和出度相同,
那么x就开始连z,仔细想一想 这是不是就是费用流,先使路的费用小的满流,然后次小,然后次次小,所以费用流可以完美解决这个问题
有向图的中国邮路问题:

咳咳。。。反正wrong 交网上的代码也wrong
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, s, t;
int head[maxn], d[maxn], vis[maxn], p[maxn], f[maxn], fi[maxn];
int in[maxn], out[maxn];
int cnt, flow, value; struct node
{
int u, v, c, w, next;
}Node[maxn << ]; void add(int u, int v, int c, int w)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].c = c;
Node[cnt].next = head[u];
head[u] = cnt++;
} int spfa()
{
queue<int> Q;
mem(vis, );
mem(p, -);
for(int i = ; i < maxn; i++) d[i] = INF;
Q.push(s);
d[s] = ;
vis[s] = ;
p[s] = , f[s] = INF;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i = head[u]; i != -; i = Node[i].next)
{
node e = Node[i];
if(d[e.v] > d[u] + e.w && e.c > )
{
d[e.v] = d[u] + e.w;
p[e.v] = i;
f[e.v] = min(f[u], e.c);
if(!vis[e.v])
{
Q.push(e.v);
vis[e.v] = ;
}
}
}
}
if(p[t] == -) return ;
flow += f[t]; value += f[t] * d[t];
for(int i = t; i != s; i = Node[p[i]].u)
{
Node[p[i]].c -= f[t];
Node[p[i]^].c += f[t];
}
return ;
} void max_flow()
{
while(spfa());
} void init()
{
mem(head, -);
mem(in, );
mem(out, );
cnt = value = flow = ;
} int find(int x)
{
return fi[x] == x ? fi[x] : (fi[x] = find(fi[x]));
} int main()
{
int T;
int u, v, w;
cin >> T;
while(T--)
{
for(int i = ; i < maxn; i++) fi[i] = i;
int flag = , ans = ;
init();
int edge_sum = ;
cin >> n >> m;
s = n + , t = n + ;
for(int i = ; i < m; i++)
{
cin >> u >> v >> w;
int l = find(u);
int r = find(v);
if(l != r) fi[l] = r;
edge_sum += w;
add(u, v, INF, w);
in[v]++;
out[u]++;
}
for(int i = ; i < n; i++)
if(fi[i] == i) ans++;
if(ans > )
{
puts("-1");
continue;
}
int tot_flow = ;
for(int i = ; i < n; i++)
{
if(in[i] == && out[i] == )
{
flag = ;
break;
}
if(out[i] > in[i]) add(i, t, out[i] - in[i], ), tot_flow += out[i] - in[i];
else if(in[i] > out[i]) add(s, i, in[i] - out[i], );
}
if(flag)
{
puts("-1");
continue;
} max_flow();
if(tot_flow != flow)
{
puts("-1");
continue;
}
cout << edge_sum + value << endl;
} return ;
}
The Chinese Postman Problem HIT - 2739(有向图中国邮路问题)的更多相关文章
- HIT 2739 - The Chinese Postman Problem - [带权有向图上的中国邮路问题][最小费用最大流]
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2739 Time limit : 1 sec Memory limit : 64 M A Chinese ...
- HITOJ 2739 The Chinese Postman Problem(欧拉回路+最小费用流)
The Chinese Postman Problem My Tags (Edit) Source : bin3 Time limit : 1 sec Memory limit : 6 ...
- Chinese Postman Problem Aizu - DPL_2_B(无向图中国邮路问题)
题意: 带权无向图上的中国邮路问题:一名邮递员需要经过每条边至少一次,最后回到出发点,一条边多次经过权值要累加,问最小总权值是多少.(2 <= N <= 15, 1 <= M < ...
- HIT2739 The Chinese Postman Problem(最小费用最大流)
题目大概说给一张有向图,要从0点出发返回0点且每条边至少都要走过一次,求走的最短路程. 经典的CPP问题,解法就是加边构造出欧拉回路,一个有向图存在欧拉回路的充分必要条件是基图连通且所有点入度等于出度 ...
- FZU - 2038 -E - Another Postman Problem (思维+递归+回溯)
Chinese Postman Problem is a very famous hard problem in graph theory. The problem is to find a shor ...
- Problem E: 穷游中国在统题 优先队列 + 模拟
http://www.gdutcode.sinaapp.com/problem.php?cid=1049&pid=4 Problem E: 穷游中国在统题 Description Travel ...
- LightOJ1086 Jogging Trails(欧拉回路+中国邮递员问题+SPFA)
题目求从某点出发回到该点经过所有边至少一次的最短行程. 这个问题我在<图论算法理论.实现及应用>中看过,是一个经典的问题——中国邮递员问题(CPP, chinese postman pro ...
- Soj题目分类
-----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...
- 贪心算法:旅行商问题(TSP)
TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干个城市,任何两个城市之间 ...
随机推荐
- linux中断源码分析 - 概述(一)
本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 关于中断和异常 一般在书中都会把中断和异常一起说明,因为它们具有相同的特点,同时也有不同的地方.在CPU里,中断 ...
- 关于PCB开窗
如果走220V,那么线宽一点,一般高电压下面不覆铜 https://blog.csdn.net/zhy295006359/article/details/77412566 假设感觉需要走大电流,那么就 ...
- NOI.ac #8 小w、小j和小z LIS
传送门 题意:在一个数轴上,给出$N$个人的初始位置与速度(速度有方向),求最大的时间使得存在$N-K$个人在这一段时间内两两没有相遇.$1 \leq K \leq N \leq 10^5$ 显然有二 ...
- npm install报错 npm ERR! enoent ENOENT: no such file or directory
在npm之后出现如下错误: $ npm install npm WARN checkPermissions Missing write access to /Users/lucas/code/js/v ...
- H+ 后台主题UI框架
十年河东,十年河西,莫欺少年穷 学无止境,精益求精 今天得到了一个非常完美的后端管理系统框架:H+ 后台主题UI框架 H+ 后台主题UI框架 H+是一个完全响应式,基于Bootstrap3.3.6最新 ...
- JSON WEB TOKEN,简单谈谈TOKEN的使用及在C#中的实现
十年河东,十年河西,莫欺少年穷. 学无止境,精益求精. 突然发现整个十月份自己还没有写一篇博客......哎,说出来都是泪啊,最近加班实在实在实在是太多了,真的没有多余的时间写博客.这不,今天也在加班 ...
- Jenkins 配置 Node.js 项目
开始 弄清楚 Jenkins 服务器 用 Jenkins 管理员账号下载 NodeJS Plugin 系统管理 ---> 全局工具配置 ---> NodeJS ---> 安装 --- ...
- [Oralce][InMemory]如何确定一个表已经被Populate 到In Memory 中?
[Oralce][InMemory]如何确定一个表已经被Populate 到In Memory 中? 以如下方法来查看 POPULATE_STATUS 是不行的. SQL> select ins ...
- 汇编 SETG,SETL ,SETGE, SETLE指令
一.SETG SETZ(SETE) //取ZF标志位值 放到寄存器里 SETNZ(SETNE) == > SETG //setg cl//ZF==0 并 SF==0 并 OF==0 时 cl=1 ...
- Html5计算MD5值
教程: http://www.tuicool.com/articles/InEBNz 组件: https://github.com/satazor/js-spark-md5