xgboost应用
在业务中,我们经常需要对数据建模并预测。简单的情况下,我们采用 if else 判断(一棵树)即可。但如果预测结果与众多因素有关,而每一个特征的权重又不尽相同。
所以我们如何把这些特征的权重合理的找出来,xgboost正是这样一种算法。
xgboost的原理大致是会构建多棵决策树,来提高预测率。原谅我渣渣的数学,资料很多:(https://www.jianshu.com/p/7467e616f227)
这里记录下python demo
参考网址:https://machinelearningmastery.com/develop-first-xgboost-model-python-scikit-learn/
经验:在模型训练中,参数的调整固然重要,但特征的辨识度更加重要,所以加入的特征辨识度一定要高,这样训练出的模型准确率才能高。
# First XGBoost model for Pima Indians dataset
from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# load data
dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")
# split data into X and y
X = dataset[:,0:8]
Y = dataset[:,8]
# split data into train and test sets
seed = 7
test_size = 0.33
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)
# fit model no training data
model = XGBClassifier()
model.fit(X_train, y_train)
# make predictions for test data
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
# evaluate predictions
accuracy = accuracy_score(y_test, predictions)
print("Accuracy: %.2f%%" % (accuracy * 100.0))
xgboost应用的更多相关文章
- 搭建 windows(7)下Xgboost(0.4)环境 (python,java)以及使用介绍及参数调优
摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgb ...
- 在Windows10 64位 Anaconda4 Python3.5下安装XGBoost
系统环境: Windows10 64bit Anaconda4 Python3.5.1 软件安装: Git for Windows MINGW 在安装的时候要改一个选择(Architecture选择x ...
- 【原创】xgboost 特征评分的计算原理
xgboost是基于GBDT原理进行改进的算法,效率高,并且可以进行并行化运算: 而且可以在训练的过程中给出各个特征的评分,从而表明每个特征对模型训练的重要性, 调用的源码就不准备详述,本文主要侧重的 ...
- Ubuntu: ImportError: No module named xgboost
ImportError: No module named xgboost 解决办法: git clone --recursive https://github.com/dmlc/xgboost cd ...
- windows下安装xgboost
Note that as of the most recent release the Microsoft Visual Studio instructions no longer seem to a ...
- xgboost原理及应用
1.背景 关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT 地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解. 2.xgboo ...
- xgboost
xgboost后面加了一个树的复杂度 对loss函数进行2阶泰勒展开,求得最小值, 参考链接:https://homes.cs.washington.edu/~tqchen/pdf/BoostedTr ...
- 【转】XGBoost参数调优完全指南(附Python代码)
xgboost入门非常经典的材料,虽然读起来比较吃力,但是会有很大的帮助: 英文原文链接:https://www.analyticsvidhya.com/blog/2016/03/complete-g ...
- 【原创】Mac os 10.10.3 安装xgboost
大家用的比较多的是Linux和windows,基于Mac os的安装教程不多, 所以在安装的过程中遇到很多问题,经过较长时间的尝试,可以正常安装和使用, [说在前面]由于新版本的Os操作系统不支持op ...
- 机器学习(四)--- 从gbdt到xgboost
gbdt(又称Gradient Boosted Decision Tree/Grdient Boosted Regression Tree),是一种迭代的决策树算法,该算法由多个决策树组成.它最早见于 ...
随机推荐
- NoSuchBeanDefinitionException:No qualifying bean of type
Exception in thread "main" org.springframework.beans.factory.NoSuchBeanDefinitionException ...
- [转载]SpringMVC的Model参数绑定方式
SpringMVC的各种参数绑定方式 http://www.cnblogs.com/HD/p/4107674.html springMVC中复杂嵌套对象.List等集合类型数据绑定 http://ww ...
- Metaspace 之一:Metaspace整体介绍(永久代被替换原因、元空间特点、元空间内存查看分析方法)
回顾 根据JVM内存区域的划分,简单的画了下方的这个示意图.区域主要分为两大块,一块是堆区(Heap),我们所New出的对象都会在堆区进行分配,在C语言中的malloc所分配的方法就是从Heap区获取 ...
- 转《canvas实现滤镜效果》
<code class="language-html"><html> <head> <style type="text/css& ...
- 线性代数的本质与几何意义 03. 矩阵与线性变换 (3blue1brown 咪博士 图文注解版)
首先,恭喜你读到了咪博士的这篇文章.本文可以说是该系列最重要.最核心的文章.你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么.读完咪博士的这篇文章,你一定会有一种醍醐灌顶.豁然开朗的感觉! ...
- spring cloud实战与思考(四) JWT之Token主动失效
需求: JWT泄露.密码重置等场景下,需要将未过期但是已经不安全的JWT主动失效. 本文不再复述JWT的基础知识,不了解的小伙伴可以自行Google一下.这里主要是针对以上需求聊一聊解决方案.如果服务 ...
- Java之多线程(实现Runnable接口)
package test_demo.ThreadsDemo; public class TestRunnable { public static void main(String[] args) { ...
- selenium之批量执行测试用例生成HTML结果文件
使用HTMLTestRunner运行测试套件,自动生成html测试报告: import unittest, HTMLTestRunner, sendmail_html import time, os ...
- ceph 性能测试
我在物理机上创建了5台虚拟机,搭建了一个ceph集群,结构如图: 具体的安装步骤参考文档:http://docs.ceph.org.cn/start/ http://www.centoscn.com/ ...
- Redis报错总结
MISCONF Redis is configured to save RDB snapshots MISCONF Redis is configured to save RDB snapshots, ...