时间限制400 ms
内存限制65536 kB
代码长度限制16000 B

There is a public bike service in Hangzhou City which provides great
convenience to the tourists from all over the world. One may rent a bike
at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the
real-time capacity of all the stations. A station is said to be in
perfect condition if it is exactly half-full. If a station is full or
empty, PBMC will collect or send bikes to adjust the condition of that
station to perfect. And more, all the stations on the way will be
adjusted as well.

When a problem station is reported, PBMC will always choose the
shortest path to reach that station. If there are more than one shortest
path, the one that requires the least number of bikes sent from PBMC
will be chosen.

Figure 1
Figure 1 illustrates an example. The stations are represented by
vertices and the roads correspond to the edges. The number on an edge is
the time taken to reach one end station from another. The number
written inside a vertex S is the current number of bikes stored at S.
Given that the maximum capacity of each station is 10. To solve the
problem at S3, we have 2 different shortest paths:

  1. PBMC -> S1 -> S3. In this case, 4 bikes must be sent from
    PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3,
    so that both stations will be in perfect conditions.

  2. PBMC -> S2 -> S3. This path requires the same time as path
    1, but only 3 bikes sent from PBMC and hence is the one that will be
    chosen.

Input Specification:

Each input file contains one test case. For each case, the first line
contains 4 numbers: Cmax (<= 100), always an even number, is the
maximum capacity of each station; N (<= 500), the total number of
stations; Sp, the index of the problem station (the stations are
numbered from 1 to N, and PBMC is represented by the vertex 0); and M,
the number of roads. The second line contains N non-negative numbers Ci
(i=1,…N) where each Ci is the current number of bikes at Si
respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and
Tij which describe the time Tij taken to move betwen stations Si and Sj.
All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the
number of bikes that PBMC must send. Then after one space, output the
path in the format: 0->S1->…->Sp. Finally after another space,
output the number of bikes that we must take back to PBMC after the
condition of Sp is adjusted to perfect.

Note that if such a path is not unique, output the one that requires
minimum number of bikes that we must take back to PBMC. The judge’s data
guarantee that such a path is unique.

Sample Input:
10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
Sample Output:
3 0->2->3 0

上去一看最短路,顺便附带空缺(need)和多余(nneed)的个数记录,然后有两个点没过,抠了半天,他的要求是这条路径中,如果有某个点缺车,而前面总的多余的话,可以填空缺,如果前面不多,这里的空缺就只能由总站提供,我一直以为他是在一条路径走个来回,某个点多余的可以同时填补前面或者后面的空缺,再者,要求出所有的最短路径,然后找出最优的。

不能只用最短路去满足所有要求,单纯对于一个不是查询点的点,假如按照最优去更新他,那么可能是不满足条件的,从他到目标点的路上可能有过多的空缺,需要填补,这个时候就希望在这个点之前有足够多的多余,可是总的要求是在到某点路径同样短且空缺相同的情况下,多余的车辆尽量少,就与后方高需求矛盾了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define inf 0x3f3f3f3f
int c;///每个车站最大容量
int n;///车站的总个数
int p;///要求车站的编号
int m;///道路的条数
int current[];///各车站当前车辆数
int road[][];///两车站距离
int dis[];///0到i路径的长度
int vis[];///标记访问过该车站没有
vector<int> pathfrom[];///记录最短路径来源
vector<int> temppath;///临时路径记录
vector<int> path;///记录最佳路径
int perfect;///最佳状态
int minneed = inf,minnneed = inf;
int u,v,w;
void dfs(int ve)
{
if(!ve)
{
int need = ,nneed = ;
for(int i = temppath.size() - ;i >= ;i --)
{
if(current[temppath[i]] >= )nneed += current[temppath[i]];
else
{
if(nneed + current[temppath[i]] >= )
{
nneed += current[temppath[i]];
}
else
{
need -= (nneed + current[temppath[i]]);
nneed = ;
}
}
}
if(need < minneed)minneed = need,minnneed = nneed,path = temppath;
else if(need == minneed && nneed < minnneed)minnneed = nneed,path = temppath;
return;
}
for(int i = ;i < pathfrom[ve].size();i ++)
{
int d = pathfrom[ve][i];
temppath.push_back(d);
dfs(d);
temppath.pop_back();
}
}
int main()
{
scanf("%d%d%d%d",&c,&n,&p,&m);
c /= ;
perfect -= c * n;
for(int i = ;i <= n;i ++)
{
scanf("%d",&current[i]);
current[i] -= c;
}
for(int i = ;i <= n;i ++)
{
for(int j = ;j <= n;j ++)
{
road[i][j] = inf;
}
dis[i] = inf;
road[i][i] = ;
}
for(int i = ;i < m;i ++)
{
scanf("%d%d%d",&u,&v,&w);
road[u][v] = road[v][u] = w;
}
int t;///最短距离的结点
int mi;///最短距离
dis[] = ;
while()
{
t = -;
mi = inf;
for(int i = ;i <= n;i ++)
{
if(!vis[i] && mi > dis[i])
{
t = i;
mi = dis[i];
}
}
if(t == -)break;
vis[t] = ;
for(int i = ;i <= n;i ++)
{
if(vis[i] || road[t][i] == inf)continue;
int d = dis[t] + road[t][i];
if(d < dis[i])
{
pathfrom[i].clear();
dis[i] = d;
pathfrom[i].push_back(t);
}
else if(d == dis[i])
{
pathfrom[i].push_back(t);
}
}
}
temppath.push_back(p);
dfs(p);
printf("%d 0",minneed);
for(int i = path.size() - ;i >= ;i --)
printf("->%d",path[i]);
printf(" %d",minnneed);
}

错误代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define inf 0x3f3f3f3f
int c;///每个车站最大容量
int n;///车站的总个数
int p;///要求车站的编号
int m;///道路的条数
int current[];///各车站当前车辆数
int road[][];///两车站距离
int dis[];///0到i路径的长度
int num[];///0到i车辆的总数
int vis[];///标记访问过该车站没有
int path[];///路径
int spath[];///最短路径
int pa;///spath下标
int u,v,w;
void getpath(int s)
{
if(path[s])getpath(path[s]);
spath[pa ++] = s;
}
int main()
{
scanf("%d%d%d%d",&c,&n,&p,&m);
c /= ;
for(int i = ;i <= n;i ++)
{
scanf("%d",&current[i]);
current[i] -= c;
}
for(int i = ;i <= n;i ++)
{
for(int j = ;j <= n;j ++)
{
road[i][j] = inf;
}
road[i][i] = ;
}
for(int i = ;i < m;i ++)
{
scanf("%d%d%d",&u,&v,&w);
road[u][v] = road[v][u] = w;
}
int t;///最短距离的结点
int mi;///最短距离
for(int i = ;i <= n;i ++)
{
dis[i] = road[][i];
if(dis[i] != inf)
{
num[i] = current[i];
path[i] = ;
}
}
while()
{
mi = inf;
for(int i = ;i <= n;i ++)
{
if(!vis[i] && mi > dis[i])
{
mi = dis[t = i];
}
}
if(mi == inf)break;
vis[t] = ;
for(int i = ;i <= n;i ++)
{
if(vis[i])continue;
int d = dis[t] + road[t][i];
if(d < dis[i])
{
dis[i] = d;
num[i] = num[t] + current[i];
path[i] = t;
}
else if(d == dis[i])
{
int change = num[t] + current[i];
if(num[i] < && change > num[i] || num[i] >= && change >= && num[i] > change)
{
num[i] = change;
path[i] = t;
}
}
}
}
getpath(p);
printf("%d 0",num[p] < ? -num[p] : );
for(int i = ;i < pa;i ++)
printf("->%d",spath[i]);
printf(" %d",num[p] <= ? : num[p]);
}

1018 Public Bike Management (30)(30 分)的更多相关文章

  1. 1018 Public Bike Management (30 分)(图的遍历and最短路径)

    这题不能直接在Dijkstra中写这个第一 标尺和第二标尺的要求 因为这是需要完整路径以后才能计算的  所以写完后可以在遍历 #include<bits/stdc++.h> using n ...

  2. PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs,dfs记录路径,做了两天)

    1018 Public Bike Management (30 分)   There is a public bike service in Hangzhou City which provides ...

  3. PAT 1018 Public Bike Management(Dijkstra 最短路)

    1018. Public Bike Management (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

  4. PAT 1018 Public Bike Management[难]

    链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018  Public ...

  5. PAT甲级1018. Public Bike Management

    PAT甲级1018. Public Bike Management 题意: 杭州市有公共自行车服务,为世界各地的游客提供了极大的便利.人们可以在任何一个车站租一辆自行车,并将其送回城市的任何其他车站. ...

  6. 1018 Public Bike Management (30 分)

    There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...

  7. 1018 Public Bike Management (30分) 思路分析 + 满分代码

    题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...

  8. 1018. Public Bike Management (30)

    时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue There is a public bike service i ...

  9. PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS

    There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...

随机推荐

  1. 将PHP 5.3.3 (cli)升级到PHP 5.6.31 (cli)

    centos默认系统安装的是php5.3 [root@sz-local1 scripts]# rpm -qa |grep phpphp-pdo-5.3.3-47.el6.x86_64php-mysql ...

  2. hdu 5381 The sum of gcd 2015多校联合训练赛#8莫队算法

    The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) T ...

  3. 自定义 ViewController 容器转场

    本文转载至 http://blog.csdn.net/yongyinmg/article/details/40621463 在话题 #5 中,Chris Eidhof 向我们介绍了 iOS7 引入的新 ...

  4. Visual Studion 2013 HTML 如何打开设计图

    Visual Studion 2013 HTML 没有设计视图? 在解决方案中对要打开的HTML文件 右键-->打开方式-->HTML(Web窗体)编辑器 原地址>>:http ...

  5. 【BZOJ2806】[Ctsc2012]Cheat 广义后缀自动机+二分+单调队列优化DP

    [BZOJ2806][Ctsc2012]Cheat Description Input 第一行两个整数N,M表示待检查的作文数量,和小强的标准作文库的行数接下来M行的01串,表示标准作文库接下来N行的 ...

  6. VLFeat图像库在VS2012下的配置

         近期做课题所需,開始使用VLFeat图像库.      库下载链接:      http://download.csdn.net/detail/sunboyiris/7500097     ...

  7. scala与java之间的那些事

    scala与java之间的关系,我认为可以用一句话来开头:scala来源于java,但又高于java. scala的设计者Martin Odersky就是一个JAVA控,这位牛人设计了javac和编写 ...

  8. Java的接口和抽象类(转发:http://www.importnew.com/18780.html)

    深入理解Java的接口和抽象类 对于面向对象编程来说,抽象是它的一大特征之一.在Java中,可以通过两种形式来体现OOP的抽象:接口和抽象类.这两者有太多相似的地方,又有太多不同的地方.很多人在初学的 ...

  9. Javaweb基础--->过滤器filter(转发)

    一.Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态 ...

  10. Yii2 高级查询

    首先我们要自己写一个ActiveQuery 类并且继承 Yii2 的 ActiveQuery: namespace api\models; class ActiveQuery extends \yii ...