时间限制400 ms
内存限制65536 kB
代码长度限制16000 B

There is a public bike service in Hangzhou City which provides great
convenience to the tourists from all over the world. One may rent a bike
at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the
real-time capacity of all the stations. A station is said to be in
perfect condition if it is exactly half-full. If a station is full or
empty, PBMC will collect or send bikes to adjust the condition of that
station to perfect. And more, all the stations on the way will be
adjusted as well.

When a problem station is reported, PBMC will always choose the
shortest path to reach that station. If there are more than one shortest
path, the one that requires the least number of bikes sent from PBMC
will be chosen.

Figure 1
Figure 1 illustrates an example. The stations are represented by
vertices and the roads correspond to the edges. The number on an edge is
the time taken to reach one end station from another. The number
written inside a vertex S is the current number of bikes stored at S.
Given that the maximum capacity of each station is 10. To solve the
problem at S3, we have 2 different shortest paths:

  1. PBMC -> S1 -> S3. In this case, 4 bikes must be sent from
    PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3,
    so that both stations will be in perfect conditions.

  2. PBMC -> S2 -> S3. This path requires the same time as path
    1, but only 3 bikes sent from PBMC and hence is the one that will be
    chosen.

Input Specification:

Each input file contains one test case. For each case, the first line
contains 4 numbers: Cmax (<= 100), always an even number, is the
maximum capacity of each station; N (<= 500), the total number of
stations; Sp, the index of the problem station (the stations are
numbered from 1 to N, and PBMC is represented by the vertex 0); and M,
the number of roads. The second line contains N non-negative numbers Ci
(i=1,…N) where each Ci is the current number of bikes at Si
respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and
Tij which describe the time Tij taken to move betwen stations Si and Sj.
All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the
number of bikes that PBMC must send. Then after one space, output the
path in the format: 0->S1->…->Sp. Finally after another space,
output the number of bikes that we must take back to PBMC after the
condition of Sp is adjusted to perfect.

Note that if such a path is not unique, output the one that requires
minimum number of bikes that we must take back to PBMC. The judge’s data
guarantee that such a path is unique.

Sample Input:
10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
Sample Output:
3 0->2->3 0

上去一看最短路,顺便附带空缺(need)和多余(nneed)的个数记录,然后有两个点没过,抠了半天,他的要求是这条路径中,如果有某个点缺车,而前面总的多余的话,可以填空缺,如果前面不多,这里的空缺就只能由总站提供,我一直以为他是在一条路径走个来回,某个点多余的可以同时填补前面或者后面的空缺,再者,要求出所有的最短路径,然后找出最优的。

不能只用最短路去满足所有要求,单纯对于一个不是查询点的点,假如按照最优去更新他,那么可能是不满足条件的,从他到目标点的路上可能有过多的空缺,需要填补,这个时候就希望在这个点之前有足够多的多余,可是总的要求是在到某点路径同样短且空缺相同的情况下,多余的车辆尽量少,就与后方高需求矛盾了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define inf 0x3f3f3f3f
int c;///每个车站最大容量
int n;///车站的总个数
int p;///要求车站的编号
int m;///道路的条数
int current[];///各车站当前车辆数
int road[][];///两车站距离
int dis[];///0到i路径的长度
int vis[];///标记访问过该车站没有
vector<int> pathfrom[];///记录最短路径来源
vector<int> temppath;///临时路径记录
vector<int> path;///记录最佳路径
int perfect;///最佳状态
int minneed = inf,minnneed = inf;
int u,v,w;
void dfs(int ve)
{
if(!ve)
{
int need = ,nneed = ;
for(int i = temppath.size() - ;i >= ;i --)
{
if(current[temppath[i]] >= )nneed += current[temppath[i]];
else
{
if(nneed + current[temppath[i]] >= )
{
nneed += current[temppath[i]];
}
else
{
need -= (nneed + current[temppath[i]]);
nneed = ;
}
}
}
if(need < minneed)minneed = need,minnneed = nneed,path = temppath;
else if(need == minneed && nneed < minnneed)minnneed = nneed,path = temppath;
return;
}
for(int i = ;i < pathfrom[ve].size();i ++)
{
int d = pathfrom[ve][i];
temppath.push_back(d);
dfs(d);
temppath.pop_back();
}
}
int main()
{
scanf("%d%d%d%d",&c,&n,&p,&m);
c /= ;
perfect -= c * n;
for(int i = ;i <= n;i ++)
{
scanf("%d",&current[i]);
current[i] -= c;
}
for(int i = ;i <= n;i ++)
{
for(int j = ;j <= n;j ++)
{
road[i][j] = inf;
}
dis[i] = inf;
road[i][i] = ;
}
for(int i = ;i < m;i ++)
{
scanf("%d%d%d",&u,&v,&w);
road[u][v] = road[v][u] = w;
}
int t;///最短距离的结点
int mi;///最短距离
dis[] = ;
while()
{
t = -;
mi = inf;
for(int i = ;i <= n;i ++)
{
if(!vis[i] && mi > dis[i])
{
t = i;
mi = dis[i];
}
}
if(t == -)break;
vis[t] = ;
for(int i = ;i <= n;i ++)
{
if(vis[i] || road[t][i] == inf)continue;
int d = dis[t] + road[t][i];
if(d < dis[i])
{
pathfrom[i].clear();
dis[i] = d;
pathfrom[i].push_back(t);
}
else if(d == dis[i])
{
pathfrom[i].push_back(t);
}
}
}
temppath.push_back(p);
dfs(p);
printf("%d 0",minneed);
for(int i = path.size() - ;i >= ;i --)
printf("->%d",path[i]);
printf(" %d",minnneed);
}

错误代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define inf 0x3f3f3f3f
int c;///每个车站最大容量
int n;///车站的总个数
int p;///要求车站的编号
int m;///道路的条数
int current[];///各车站当前车辆数
int road[][];///两车站距离
int dis[];///0到i路径的长度
int num[];///0到i车辆的总数
int vis[];///标记访问过该车站没有
int path[];///路径
int spath[];///最短路径
int pa;///spath下标
int u,v,w;
void getpath(int s)
{
if(path[s])getpath(path[s]);
spath[pa ++] = s;
}
int main()
{
scanf("%d%d%d%d",&c,&n,&p,&m);
c /= ;
for(int i = ;i <= n;i ++)
{
scanf("%d",&current[i]);
current[i] -= c;
}
for(int i = ;i <= n;i ++)
{
for(int j = ;j <= n;j ++)
{
road[i][j] = inf;
}
road[i][i] = ;
}
for(int i = ;i < m;i ++)
{
scanf("%d%d%d",&u,&v,&w);
road[u][v] = road[v][u] = w;
}
int t;///最短距离的结点
int mi;///最短距离
for(int i = ;i <= n;i ++)
{
dis[i] = road[][i];
if(dis[i] != inf)
{
num[i] = current[i];
path[i] = ;
}
}
while()
{
mi = inf;
for(int i = ;i <= n;i ++)
{
if(!vis[i] && mi > dis[i])
{
mi = dis[t = i];
}
}
if(mi == inf)break;
vis[t] = ;
for(int i = ;i <= n;i ++)
{
if(vis[i])continue;
int d = dis[t] + road[t][i];
if(d < dis[i])
{
dis[i] = d;
num[i] = num[t] + current[i];
path[i] = t;
}
else if(d == dis[i])
{
int change = num[t] + current[i];
if(num[i] < && change > num[i] || num[i] >= && change >= && num[i] > change)
{
num[i] = change;
path[i] = t;
}
}
}
}
getpath(p);
printf("%d 0",num[p] < ? -num[p] : );
for(int i = ;i < pa;i ++)
printf("->%d",spath[i]);
printf(" %d",num[p] <= ? : num[p]);
}

1018 Public Bike Management (30)(30 分)的更多相关文章

  1. 1018 Public Bike Management (30 分)(图的遍历and最短路径)

    这题不能直接在Dijkstra中写这个第一 标尺和第二标尺的要求 因为这是需要完整路径以后才能计算的  所以写完后可以在遍历 #include<bits/stdc++.h> using n ...

  2. PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs,dfs记录路径,做了两天)

    1018 Public Bike Management (30 分)   There is a public bike service in Hangzhou City which provides ...

  3. PAT 1018 Public Bike Management(Dijkstra 最短路)

    1018. Public Bike Management (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

  4. PAT 1018 Public Bike Management[难]

    链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018  Public ...

  5. PAT甲级1018. Public Bike Management

    PAT甲级1018. Public Bike Management 题意: 杭州市有公共自行车服务,为世界各地的游客提供了极大的便利.人们可以在任何一个车站租一辆自行车,并将其送回城市的任何其他车站. ...

  6. 1018 Public Bike Management (30 分)

    There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...

  7. 1018 Public Bike Management (30分) 思路分析 + 满分代码

    题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...

  8. 1018. Public Bike Management (30)

    时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue There is a public bike service i ...

  9. PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS

    There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...

随机推荐

  1. yii2.0 console执行php守护进程

    //该方法只需执行一次public function actionIndex(){ $pid =pcntl_fork();//在当前进程中生成一个新的子进程 //$pid会有三种形式 $pid==-1 ...

  2. Jmeter 03 Jmeter脚本开发

    JMeter 工作区介绍 JMeter Http 协议录制 JMeter 脚本调测 JMeter 关联 JMeter 参数化 JMeter 检查点 JMeter 事务 JMeter 集合点 JMete ...

  3. CAFFE学习笔记(一)Caffe_Example之训练mnist

    0.参考文献 [1]caffe官网<Training LeNet on MNIST with Caffe>; [2]薛开宇<读书笔记4学习搭建自己的网络MNIST在caffe上进行训 ...

  4. POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. Frobenius inner product

    https://en.wikipedia.org/wiki/Frobenius_inner_product Frobenius norm

  6. Android 开发之深入理解安卓调试桥各种错误解决办法

    摘要: Android开发调试项目使用到安卓调试桥工具,Android Debug Bridge(ADB)位于sdk路径platform-tools文件夹,使用Android Studio或Eclip ...

  7. 使VS自动生成代码注释

    1.注释模板位置C:\Program Files\Microsoft Visual Studio 11.0\Common7\IDE\ItemTemplatesCache 里面有各种脚本的模板 2.找到 ...

  8. Java进阶学习:JSON解析利器JackSon

    Java:JSON解析利器JackSon JackSon基础 1.Maven项目引入 <!-- https://mvnrepository.com/artifact/org.codehaus.j ...

  9. 让你快速上手Runtime(转)

    前言 本篇主要介绍Runtime在开发中的一些使用场景,顺便讲解了下MJExtension的底层实现.如果喜欢我的文章,可以关注我微博:袁峥Seemygo,也可以来小码哥,了解下我们的iOS培训课程. ...

  10. LISP

    LISP是一种通用高级计算机程序语言,长期以来垄断人工智能领域的应用.LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C.Fortran和面向对象的 ...