Consumer代码

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.storage.StorageLevel
object NetWorkStream {
def main(args: Array[String]): Unit = {
//创建sparkConf对象
var conf=new SparkConf().setMaster("spark://192.168.177.120:7077").setAppName("netWorkStream");
//创建streamingContext:是所有数据流的一个主入口
//Seconds(1)代表每一秒,批量执行一次结果
var ssc=new StreamingContext(conf,Seconds());
//从192.168.99.143接受到输入数据
var lines= ssc.socketTextStream("192.168.99.143", );
//计算出传入单词的个数
var words=lines.flatMap { line => line.split(" ")}
var wordCount= words.map { w => (w,) }.reduceByKey(_+_);
//打印结果
wordCount.print();
ssc.start();//启动进程
ssc.awaitTermination();//等待计算终止
}
在另一台机器上出入
nc -lk
zhang xing sheng zhang
 
消费者终端会显示消费结果
// :: INFO scheduler.TaskSetManager: Finished task 0.0 in stage 128.0 (TID ) in  ms on 192.168.177.120 (/)
// :: INFO scheduler.TaskSchedulerImpl: Removed TaskSet 128.0, whose tasks have all completed, from pool
// :: INFO scheduler.DAGScheduler: ResultStage (print at NetWorkStream.scala:) finished in 0.031 s
// :: INFO scheduler.DAGScheduler: Job finished: print at NetWorkStream.scala:, took 0.080836 s
// :: INFO spark.SparkContext: Starting job: print at NetWorkStream.scala:
// :: INFO scheduler.DAGScheduler: Got job (print at NetWorkStream.scala:) with output partitions
// :: INFO scheduler.DAGScheduler: Final stage: ResultStage (print at NetWorkStream.scala:)
// :: INFO scheduler.DAGScheduler: Parents of final stage: List(ShuffleMapStage )
// :: INFO scheduler.DAGScheduler: Missing parents: List()
// :: INFO scheduler.DAGScheduler: Submitting ResultStage (ShuffledRDD[] at reduceByKey at NetWorkStream.scala:), which has no missing parents
// :: INFO memory.MemoryStore: Block broadcast_67 stored as values in memory (estimated size 2.8 KB, free 366.2 MB)
// :: INFO memory.MemoryStore: Block broadcast_67_piece0 stored as bytes in memory (estimated size 1711.0 B, free 366.2 MB)
// :: INFO storage.BlockManagerInfo: Added broadcast_67_piece0 in memory on 192.168.177.120: (size: 1711.0 B, free: 366.3 MB)
// :: INFO spark.SparkContext: Created broadcast from broadcast at DAGScheduler.scala:
// :: INFO scheduler.DAGScheduler: Submitting missing tasks from ResultStage (ShuffledRDD[] at reduceByKey at NetWorkStream.scala:)
// :: INFO scheduler.TaskSchedulerImpl: Adding task set 130.0 with tasks
// :: INFO scheduler.TaskSetManager: Starting task 0.0 in stage 130.0 (TID , 192.168.177.120, partition , NODE_LOCAL, bytes)
// :: INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Launching task on executor id: hostname: 192.168.177.120.
// :: INFO storage.BlockManagerInfo: Added broadcast_67_piece0 in memory on 192.168.177.120: (size: 1711.0 B, free: 366.3 MB)
// :: INFO scheduler.TaskSetManager: Finished task 0.0 in stage 130.0 (TID ) in ms on 192.168.177.120 (/)
// :: INFO scheduler.TaskSchedulerImpl: Removed TaskSet 130.0, whose tasks have all completed, from pool
// :: INFO scheduler.DAGScheduler: ResultStage (print at NetWorkStream.scala:) finished in 0.014 s
// :: INFO scheduler.DAGScheduler: Job finished: print at NetWorkStream.scala:, took 0.022658 s
-------------------------------------------
Time: ms
-------------------------------------------
(xing,)
(zhang,)
(sheng,)
 
备注:
var conf=new SparkConfig();
new StreamingContext(conf,Seconds(1));//创建context
  1. 定义上下文之后,你应该做下面事情
  2. After a context is defined, you have to do the following.
  3. 根据创建DStream定义输入数据源
  4. Define the input sources by creating input DStreams.
  5. 定义计算方式DStream转换和输出
  6. Define the streaming computations by applying transformation and output operations to DStreams.
  7. 使用streamingContext.start()启动接受数据的进程
  8. Start receiving data and processing it using streamingContext.start().
  9. 等待进程结束
  10. Wait for the processing to be stopped (manually or due to any error) using streamingContext.awaitTermination().
  11. 手动关闭进程
  12. The processing can be manually stopped using streamingContext.stop().
要点
  1. 一旦一个上下文启动,不能在这个上下文中设置新计算或者添加
  2. Once a context has been started, no new streaming computations can be set up or added to it.
  3. 一旦一个上下文停止,就不能在重启
  4. Once a context has been stopped, it cannot be restarted.
  5. 在同一时间一个jvm只能有一个StreamingContext 在活动
  6. Only one StreamingContext can be active in a JVM at the same time.//ssc.stop(false)
  7. 在StreamingContext 上使用stop函数,同事也会停止sparkContext,仅仅停止StreamingContext,在调用stopSparkContext设置参数为false
  8. stop() on StreamingContext also stops the SparkContext. To stop only the StreamingContext, set the optional parameter of stop() called stopSparkContext to false.
  9. 一个SparkContext 可以创建多个streamingContext和重用,只要在上一个StreamingContext停止前创建下一个StreamingContext
  10. A SparkContext can be re-used to create multiple StreamingContexts, as long as the previous StreamingContext is stopped (without stopping the SparkContext) before the next StreamingContext is created.

sparkstreaming+socket workCount 小案例的更多相关文章

  1. C# Socket通信 小案例

    本文将编写2个控制台应用程序,一个是服务器端(server),一个是客户端(client), 通过server的监听,有新的client连接后,接收client发出的信息. server代码如下: u ...

  2. MVC 小案例 -- 信息管理

    前几次更新博客都是每次周日晚上到周一,这次是周一晚上开始写,肯定也是有原因的!那就是我的 Tomact 忽然报错,无法启动,错误信息如下!同时我的 win10 也崩了,重启之后连 WIFI 的标志也不 ...

  3. Python:通过一个小案例深入理解IO多路复用

    通过一个小案例深入理解IO多路复用 假如我们现在有这样一个普通的需求,写一个简单的爬虫来爬取校花网的主页 import requests import time start = time.time() ...

  4. 机械表小案例之transform的应用

    这个小案例主要是对transform的应用. 时钟的3个表针分别是3个png图片,通过setInterval来让图片转动.时,分,秒的转动角度分别是30,6,6度. 首先,通过new Date函数获取 ...

  5. shell讲解-小案例

    shell讲解-小案例 一.文件拷贝输出检查 下面测试文件拷贝是否正常,如果cp命令并没有拷贝文件myfile到myfile.bak,则打印错误信息.注意错误信息中basename $0打印脚本名.如 ...

  6. [jQuery学习系列六]6-jQuery实际操作小案例

    前言最后在这里po上jQuery的几个小案例. Jquery例子1_占位符使用需求: 点击第一个按钮后 自动去check 后面是否有按钮没有选中, 如有则提示错误消息. <html> &l ...

  7. 02SpringMvc_springmvc快速入门小案例(XML版本)

    这篇文章中,我们要写一个入门案例,去整体了解整个SpringMVC. 先给出整个项目的结构图:

  8. React.js入门小案例

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <title&g ...

  9. SqlDependency缓存数据库表小案例

    SqlDependency的简介: SqlDependency是outputcache网页缓存的一个参数,它的作用是指定缓存失效的数据库依赖项,可以具体到数据库和表. SqlDependency能解决 ...

随机推荐

  1. 数学【p1658】 购物

    题目描述 你就要去购物了,现在你手上有N种不同面值的硬币,每种硬币有无限多个.为了方便购物,你希望带尽量少的硬币,但要能组合出1到X之间的任意值. 分析: 看到题解做法没有说出原理,所以尝试解释一下. ...

  2. Ugly Number II -- LeetCode

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  3. (转)Unity3d通过Action注册事件,回调方法

    http://www.cnblogs.com/jisi5789/archive/2013/04/22/3036589.html using UnityEngine; namespace Liulala ...

  4. 1· linux命令:查看依赖的共享库 - ldd命令

    今天使用qt链接mysql的时候,发现提示driver not load 而出现此错误一般是没有mysql驱动的原因,但是qt5.4已经提供了mysql驱动的 查看plugins/sqldrivers ...

  5. centos下配置ssh使用密钥

    查询了网上的一些教程,然后根据自己的实际操作,记录自己实际配置ssh密钥的过程: 首先在centos终端切换到要链接的用户,比如用户ssh 使用该用户生成密钥: ssh-keygen -t rsa 中 ...

  6. POJ 3694 Network (求桥,边双连通分支缩点,lca)

    Network Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5619   Accepted: 1939 Descripti ...

  7. Linux下防止文件误删方法

    转载:http://coolsky.blog.51cto.com/177347/1230332 Linux系统中,在root帐号下使用rm * -rf是非常危险的,一不小心就可能删除系统中的重要文件. ...

  8. 【Linux】CentOS7上设置快捷键 随时补充

    ---------------------------------------------------------------------------------------------------- ...

  9. 为何Redis要比Memcached好用

    Redis是新兴的通用存储系统,而Memcached仍有其适用领域 Memcached还是Redis? 在现代高性能Web应用中这一直是个争论不休的话题. 在基于关系型数据库的Web应用需要提高性能时 ...

  10. 在c++代码中执行bat文件 【转】

    我想在c++代码中执行磁盘上的一个bat文件. 这个bat文件的完整路径是:E:\\7z\\my7z.bat. 方法一: system("E:\\7z\\my7z.bat"); s ...