从分类,排序,top-k多个方面对推荐算法稳定性的评价
介绍
论文名: “classification, ranking, and top-k stability of recommendation algorithms”.
本文讲述比較推荐系统在三种情况下, 推荐稳定性情况.
与常规准确率比較的方式不同, 本文从还有一个角度, 即推荐算法稳定性方面进行比較.
具体
參与比較的推荐算法
包含:
- baseline
- 传统基于用户
- 传统基于物品
- oneSlope
- svd
比較方式
比較的过程分为两个阶段:
阶段一, 将原始数据分为两个部分, 一部分为已知打分, 还有一部分为未知打分, 用于预測.
阶段二, 在用于预測打分那部分数据中, 取出一部分数据, 增加到已知打分部分, 剩余部分仍然为预測部分.
比較阶段一中的预測结果和阶段二中预測结果的比較.
数据划分情况如图所是.
比較的方式
预測稳定性
预測性的评价方式有下面几种:
MAE, RMSE
分类稳定性
分类型的评价方式有下面几种:
准确率, 召回率, F-分数.
排名稳定性
排名型的评价方式有下面几种:
排名相关性, Spearman的ρ评价, Kruskal的γ评价, Kendall的τ评价.
前K项稳定性
前k项的评价方式有下面几种:
点击率稳定性(hit-rate), NDCG(normalized discounted cumulative gain).
比較的场景
稀疏性冲击
改变数据的稀疏性, 从几个方面比較这些推荐算法的稳定性.
结果如图所是.
基于内存的推荐算法和slopeone算法表现出强烈的不稳定性和对数据敏感性.
svd和baseline算法相对稳定.
评价数量冲击
改变第二阶段中新增加数据的数量, 比較两次实验的差异.
结果如图所是:
横坐标为比例, 即已知打分数据的倍数, 从10%到500%.
从图中能够看出, 在新增加的数据较少时, 各个推荐算法表现出高度的稳定性.
当新增加的数据较多时, 基于内存的推荐算法的稳定性不断下降.
相反, 基于模型的方法相对稳定.
打分分布冲击
除了新增加的数据外, 新增加的数据的数据分布也一定程度上影响了推荐算法的稳定性.
下表显示了改动数据分布的策略:
实验的结果例如以下:
从图中能够看出, 当增加的数据为随机时, 各个推荐算法都表现出相对较高的稳定性.
可是, 当增加的数据出现歪斜时, 基于内存的推荐算法的稳定性减少较快, 基于模型的推荐算法的稳定性基本保持不变.
算法參数冲击
对于推荐算法而言, 除了数据的因素外, 还有算法本身參数对算法稳定性的影响.
对于基于内存的算法, 类似用户/物品的数量影响着推荐算法的效果,
对于svd算法, 隐含属性的数量影响着推荐算法的结果.
实验通过改动推荐算法參数的方式进行比較, 结果如图所时:
对于top-K的比較, k值的大小也影响推荐算法的稳定性.
通过改动k的大小, 实验的结果如图所时:
实验结果表示:
对于改动算法的參数, 对svd算法的影响较少, 对于基于内存的算法影响较大.
改动top-k中k的大小, 对基于模型的推荐算法影响较小, 对于基于内存的推荐算法的稳定性影响较大.
总结
对于上面多种情况的比較.
基于模型的推荐算法在多种情况下, 稳定性较高, 特别时svd算法.
基于内存的推荐算法稳定性较差.
从分类,排序,top-k多个方面对推荐算法稳定性的评价的更多相关文章
- 排序算法Java版,以及各自的复杂度,以及由堆排序产生的top K问题
常用的排序算法包括: 冒泡排序:每次在无序队列里将相邻两个数依次进行比较,将小数调换到前面, 逐次比较,直至将最大的数移到最后.最将剩下的N-1个数继续比较,将次大数移至倒数第二.依此规律,直至比较结 ...
- pig询问top k,每个返回hour和ad_network_id最大的两个记录(SUBSTRING,order,COUNT_STAR,limit)
pig里面有一个TOP功能.我不知道为什么用不了.有时间去看看pig源代码. SET job.name 'top_k'; SET job.priority HIGH; --REGISTER piggy ...
- pig中查询top k,返回每个hour和ad_network_id下最大两个记录(SUBSTRING,order,COUNT_STAR,limit)
pig里面是有TOP函数,不知道为什么用不了.有时间要去看看pig源码了. SET job.name 'top_k'; SET job.priority HIGH; --REGISTER piggyb ...
- [LeetCode] Top K Frequent Elements 前K个高频元素
Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...
- 347. Top K Frequent Elements
Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...
- Top k问题(线性时间选择算法)
问题描述:给定n个整数,求其中第k小的数. 分析:显然,对所有的数据进行排序,即很容易找到第k小的数.但是排序的时间复杂度较高,很难达到线性时间,哈希排序可以实现,但是需要另外的辅助空间. 这里我提供 ...
- 经典面试问题: Top K 之 ---- 海量数据找出现次数最多或,不重复的。
作者:林冠宏 / 指尖下的幽灵 掘金:https://juejin.im/user/587f0dfe128fe100570ce2d8 博客:http://www.cnblogs.com/linguan ...
- [LeetCode] Top K Frequent Words 前K个高频词
Given a non-empty list of words, return the k most frequent elements. Your answer should be sorted b ...
- 程序员编程艺术:第三章续、Top K算法问题的实现
程序员编程艺术:第三章续.Top K算法问题的实现 作者:July,zhouzhenren,yansha. 致谢:微软100题实现组,狂想曲创作组. 时间:2011年05月08日 ...
随机推荐
- Spring 依赖注入(控制反转)介绍
耦合性是软件工程中的一个重要概念.对象之间的耦合性就是对象之间的依赖性.对象之间的耦合越高,维护成本越高.因此对象的设计应使类和构件之间的耦合最小. spring Ioc思想 控制翻转也就是sprin ...
- centos iptables关于ping
配置iptables策略后,一般来说INPUT都是DROP然后配置需要通过的 当执行: iptables -P INPUT DROP 后,机器就不能被ping通了! 因为icmp没有添加到规则中! 于 ...
- SYSPROCESSES 查看连接
原文:SYSPROCESSES 查看连接 SELECT at.text,sp.* FROM[Master].[dbo].[SYSPROCESSES] sp CROSS APPLY sys.dm_exe ...
- Delphi 实现窗体自适应调整尺寸以适应不同屏幕分辩率的显示问题
给你一段代码,网上转的:unit uMyClassHelpers;//实现窗体自适应调整尺寸以适应不同屏幕分辩率的显示问题.// 陈小斌,2012年3月5日 interface Uses ...
- tiny4412 串口驱动分析六 --- TTY驱动架构
转载: http://www.linuxidc.com/Linux/2013-11/92639.htm 参考: http://blog.csdn.net/lamdoc/article/details/ ...
- ASIHTTPREQUEST framework compile error when method is called / link error
never mind!!! duplicate: Error with iOS 5.1 when i use ASIHTTPRequest and SBJSON "I would take ...
- 新人补钙系列教程之:拒绝CPU高占用
1.关于MovieClip和Sprite的鼠标事件,当不需要鼠标事件的时候将mouseEnabled和mouseChildren设为false. 不断的检测鼠标交互事件会消耗CPU,尤其是大量交互对象 ...
- 第一章 初识shiro
shiro学习教程来自开涛大神的博客:http://jinnianshilongnian.iteye.com/blog/2018936 第一章 初识shiro 简单了解shiro主要记住三张图即可. ...
- SparkMLlib分类算法之逻辑回归算法
SparkMLlib分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/5169383 ...
- PS如何使用自定义画笔
1 没有杂色的白背景不用抠图,GIF格式的透明背景不用抠图,有背景但是不想抠图都可以直接定义为画笔.先选中需要定义的画笔(得到选区),然后单击编辑-定义画笔预设. 2 随后就可以找到我们的画笔工具 ...