F - Sum of Remainders

Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + ... + n mod m. As the result can be very large, you should print the value modulo 109 + 7 (the remainder when divided by 109 + 7).

The modulo operator a mod b stands for the remainder after dividing a by b. For example 10 mod 3 = 1.

Input

The only line contains two integers n, m (1 ≤ n, m ≤ 1013) — the parameters of the sum.

Output

Print integer s — the value of the required sum modulo 109 + 7.

Sample Input

Input
3 4
Output
4
Input
4 4
Output
1
Input
1 1
Output

0

//给你两个数n,m,问你n % 1 + n % 2 + … + n% m为几

这个题目的思路是,和为 n * m - sum ( [ n / i ] * i )  ,[ ] 是向下取整,i 从(1--- m)

具体是:

前面的 n*m 肯定就这样了

主要是后面的 :将 [ n / i ] 相同的做一个区间,用求和公式去节省时间

i 从 1 --- sqrt (n) ;

l = n / ( i + 1 ) + 1 , r =  n / i ; // 这就是一个个的区间

比如 n = 20 , m = 20

i=1 -->  l=11, r=20   n / (11---20) 都是等于 1

i=2 -->  l=7, r=10     n / (7---10) 都等于2

i=3 -->  l=r=6

i=4 -->  l=r=5

注意一些特殊情况,看注释

 #include <iostream>
#include <cstdio>
#include <cmath>
using namespace std; #define ll __int64
const ll MOD=1e9+; int main()
{
ll n,m;
scanf("%I64d%I64d",&n,&m);
ll ans=(n%MOD)*(m%MOD)%MOD;
ll temp=,las=m+;//记录哪些数没被减
m=min(n,m);//n 余大于 n 的都等于 n
ll nn=(ll)sqrt(n*1.0);
for (ll i=;i<=nn;i++)
{
ll l = n/(i+)+;
ll r = n/i; r=min(r,m);//可能 r 比 m 大
if (l>r) continue; las=min(las,l); ll s1=l+r , s2 =(r-l+);//这里高斯求和有个坑,要先判断哪个数可以除2,再乘
if (s1%==) s1/=; //直接用公式也不对,会超出ll限制
else s2/=;
s1%=MOD;s2%=MOD;
s1=(s1*s2)%MOD;
s1=s1*i%MOD;
temp=(temp+s1)%MOD;
}
ans=(ans+MOD-temp)%MOD;
for (ll i=;i<las;i++) //剩下的没被减得数,将n余之为0的最大整数减去
{
temp=n/i%MOD*i%MOD;
ans=(ans+MOD-temp)%MOD;
}
printf("%I64d\n",ans); return ;
}

Sum of Remainders(数学题)的更多相关文章

  1. codeforces 616E Sum of Remainders (数论,找规律)

    E. Sum of Remainders time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  2. Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学

    E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...

  3. Codeforces 616E - Sum of Remainders

    616E Sum of Remainders Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + - + n mod m. As ...

  4. Codeforces 616 E Sum of Remainders

    Discription Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + ... + n mod m. As the resu ...

  5. Educational Codeforces Round 5 E. Sum of Remainders (思维题)

    题目链接:http://codeforces.com/problemset/problem/616/E 题意很简单就不说了. 因为n % x = n - n / x * x 所以答案就等于 n * m ...

  6. codeforces 616E. Sum of Remainders 数学

    题目链接 给两个数n, m. 求n%1+n%2+.......+n%m的值. 首先, n%i = n-n/i*i, 那么原式转化为n*m-sigma(i:1 to m)(n/i*i). 然后我们可以发 ...

  7. HDU-2058-The sum problem(数学题技巧型)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2058 思路: 这题的n,m都很大,很显然直接暴力,会超时,那就不能全部都找了,利用等差数列求和公式, ...

  8. hdu 2058 The sum problem(数学题)

    一个数学问题:copy了别人的博客 #include<cstdio> #include<cstdlib> #include<cmath> int main() { ...

  9. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

随机推荐

  1. util.date.js

    ylbtech-JavaScript-util: util.date.js 日期处理工具 1.A,JS-效果图返回顶部   1.B,JS-Source Code(源代码)返回顶部 1.B.1, m.y ...

  2. Angularjs中的拦截器 (卧槽,好牛逼)

    $httpAngularJS 的 $http 服务允许我们通过发送 HTTP 请求方式与后台进行通信.在某些情况下,我们希望可以俘获所有的请求,并且在将其发送到服务端之前进行操作.还有一些情况是,我们 ...

  3. zookeeper安装和使用

    Zookeeper是Hadoop的一个子项目,它是分布式系统中的协调系统,可提供的服务主要有:配置服务.名字服务.分布式同步.组服务等. 1.下载地址 https://mirrors.cnnic.cn ...

  4. 【共享单车】—— React后台管理系统开发手记:员工管理之增删改查

    前言:以下内容基于React全家桶+AntD实战课程的学习实践过程记录.最终成果github地址:https://github.com/66Web/react-antd-manager,欢迎star. ...

  5. EffectiveJava(16)复合优先于继承

    为什么复合优先于继承? 1.继承违反了封装原则,打破了封装性 2.继承会不必要的暴露API细节,称为隐患.比如通过直接访问底层使p.getProperty(K,V)的键值对可以不是String类型 3 ...

  6. ImageSwitcher (图像切换器,显示图片)

    ImageSwitcher继承了ViewSwitcher,主要在切换图片时加入动画效果 使用方法: 1.为ImageSwitcher提供一个ViewFactory,该ViewFactory生成的Vie ...

  7. Laravel之HTTP相应

    一.基本相应示例 1.返回简单字符串 Route::get('/', function () { return 'Hello World'; }); 给定的字符串会被框架自动转化为 HTTP 响应 2 ...

  8. awk、sed、cut、grep

    二.sed [可以理解为 行在线编辑工具] 作用:sed 是一种在线编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命 ...

  9. icvEvalCARTHaarClassifier

    /* *icvEvalCARTHaarClassifier *作用:通过计算haar特征值,来分配非叶子节点直到出现叶子节点,最后返回输出值val.  */ float icvEvalCARTHaar ...

  10. TCP/IP详解 卷一(第十三章 IGMP:Internet组管理协议)

    本章将介绍用于支持主机和路由器进行多播的Internet组管理协议(IGMP) 它让一个物理网络上的所有系统知道主机当前所在的多播组.多播路由器需要这些信息以便知道多播数据报应该向那些接口转发. 跟I ...