F - Sum of Remainders

Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + ... + n mod m. As the result can be very large, you should print the value modulo 109 + 7 (the remainder when divided by 109 + 7).

The modulo operator a mod b stands for the remainder after dividing a by b. For example 10 mod 3 = 1.

Input

The only line contains two integers n, m (1 ≤ n, m ≤ 1013) — the parameters of the sum.

Output

Print integer s — the value of the required sum modulo 109 + 7.

Sample Input

Input
3 4
Output
4
Input
4 4
Output
1
Input
1 1
Output

0

//给你两个数n,m,问你n % 1 + n % 2 + … + n% m为几

这个题目的思路是,和为 n * m - sum ( [ n / i ] * i )  ,[ ] 是向下取整,i 从(1--- m)

具体是:

前面的 n*m 肯定就这样了

主要是后面的 :将 [ n / i ] 相同的做一个区间,用求和公式去节省时间

i 从 1 --- sqrt (n) ;

l = n / ( i + 1 ) + 1 , r =  n / i ; // 这就是一个个的区间

比如 n = 20 , m = 20

i=1 -->  l=11, r=20   n / (11---20) 都是等于 1

i=2 -->  l=7, r=10     n / (7---10) 都等于2

i=3 -->  l=r=6

i=4 -->  l=r=5

注意一些特殊情况,看注释

 #include <iostream>
#include <cstdio>
#include <cmath>
using namespace std; #define ll __int64
const ll MOD=1e9+; int main()
{
ll n,m;
scanf("%I64d%I64d",&n,&m);
ll ans=(n%MOD)*(m%MOD)%MOD;
ll temp=,las=m+;//记录哪些数没被减
m=min(n,m);//n 余大于 n 的都等于 n
ll nn=(ll)sqrt(n*1.0);
for (ll i=;i<=nn;i++)
{
ll l = n/(i+)+;
ll r = n/i; r=min(r,m);//可能 r 比 m 大
if (l>r) continue; las=min(las,l); ll s1=l+r , s2 =(r-l+);//这里高斯求和有个坑,要先判断哪个数可以除2,再乘
if (s1%==) s1/=; //直接用公式也不对,会超出ll限制
else s2/=;
s1%=MOD;s2%=MOD;
s1=(s1*s2)%MOD;
s1=s1*i%MOD;
temp=(temp+s1)%MOD;
}
ans=(ans+MOD-temp)%MOD;
for (ll i=;i<las;i++) //剩下的没被减得数,将n余之为0的最大整数减去
{
temp=n/i%MOD*i%MOD;
ans=(ans+MOD-temp)%MOD;
}
printf("%I64d\n",ans); return ;
}

Sum of Remainders(数学题)的更多相关文章

  1. codeforces 616E Sum of Remainders (数论,找规律)

    E. Sum of Remainders time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  2. Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学

    E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...

  3. Codeforces 616E - Sum of Remainders

    616E Sum of Remainders Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + - + n mod m. As ...

  4. Codeforces 616 E Sum of Remainders

    Discription Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + ... + n mod m. As the resu ...

  5. Educational Codeforces Round 5 E. Sum of Remainders (思维题)

    题目链接:http://codeforces.com/problemset/problem/616/E 题意很简单就不说了. 因为n % x = n - n / x * x 所以答案就等于 n * m ...

  6. codeforces 616E. Sum of Remainders 数学

    题目链接 给两个数n, m. 求n%1+n%2+.......+n%m的值. 首先, n%i = n-n/i*i, 那么原式转化为n*m-sigma(i:1 to m)(n/i*i). 然后我们可以发 ...

  7. HDU-2058-The sum problem(数学题技巧型)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2058 思路: 这题的n,m都很大,很显然直接暴力,会超时,那就不能全部都找了,利用等差数列求和公式, ...

  8. hdu 2058 The sum problem(数学题)

    一个数学问题:copy了别人的博客 #include<cstdio> #include<cstdlib> #include<cmath> int main() { ...

  9. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

随机推荐

  1. Unitity 常用工具类

    ylbtech-Unitity_C#: Unitity 常用代码 1.A,效果图返回顶部   1.B,源代码返回顶部 1,日期字符串 using System; using System.Xml; / ...

  2. python之生成excel

    #_*_coding:utf-8_*_ import MySQLdb import xlwt from datetime import datetime def get_data(sql): # 创建 ...

  3. leetcode题解:Valid Parentheses(栈的应用-括号匹配)

    题目: Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the ...

  4. Java程序猿修炼之道 之 Logging(3/3) - 怎么分析Log

    1. 说明 作为一个程序猿我们常常要做一件事情:获取某个Log文件,从当中找出自己想要的信息. 本文总结了我在工作中使用了哪些工具来分析Log文件获取我想要的信息,我近期几年的工作环境都是server ...

  5. fabricjs 高级篇(自定义类型)

    原文:https://www.sitepoint.com/fabric-js-advanced/ <html> <head> <script src='./js/fabr ...

  6. Oracle学习——扫盲篇

    前言 近期这几天一直在与Oracle数据库打交道.因为之前对Oracle的学习并不深入,仅仅是把Oracle当成一个数据源去使用.非常多东西了解的不是非常深,比方.数据库.数据库实例.表空间.用户.表 ...

  7. App功能测试的7大注意点

    转载于:https://mp.weixin.qq.com/s/27DZ1EQVpl-gb4S7n-He4g 01 运行 1)App安装完成后的试运行,可正常打开软件. 2)App打开测试,是否有加载状 ...

  8. Paxos 学习总结

    近期学习了分布式领域的重要算法Paxos,这里罗列下关键点当作总结.自己水平有限,难免存在谬误,恳请读者指正.本篇不包含Paxos的基本理论介绍.Paxos基础能够參考以下的学习资料章节. 1 Pax ...

  9. TCP是如何保证包的顺序传输

    转自:http://blog.csdn.net/ggxxkkll/article/details/7894112 大家都知道,TCP提供了最可靠的数据传输,它给发送的每个数据包做顺序化(这看起来非常烦 ...

  10. IPython introduction

    转载:http://blog.csdn.net/gavin_john/article/details/53086766 1. IPython介绍 ipython是一个python的交互式shell,比 ...