Sum of Remainders(数学题)
F - Sum of Remainders
Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Description
Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + ... + n mod m. As the result can be very large, you should print the value modulo 109 + 7 (the remainder when divided by 109 + 7).
The modulo operator a mod b stands for the remainder after dividing a by b. For example 10 mod 3 = 1.
Input
The only line contains two integers n, m (1 ≤ n, m ≤ 1013) — the parameters of the sum.
Output
Print integer s — the value of the required sum modulo 109 + 7.
Sample Input
3 4
4
4 4
1
1 1
0
//给你两个数n,m,问你n % 1 + n % 2 + … + n% m为几
这个题目的思路是,和为 n * m - sum ( [ n / i ] * i ) ,[ ] 是向下取整,i 从(1--- m)
具体是:
前面的 n*m 肯定就这样了
主要是后面的 :将 [ n / i ] 相同的做一个区间,用求和公式去节省时间
i 从 1 --- sqrt (n) ;
l = n / ( i + 1 ) + 1 , r = n / i ; // 这就是一个个的区间
比如 n = 20 , m = 20
i=1 --> l=11, r=20 n / (11---20) 都是等于 1
i=2 --> l=7, r=10 n / (7---10) 都等于2
i=3 --> l=r=6
i=4 --> l=r=5
注意一些特殊情况,看注释
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std; #define ll __int64
const ll MOD=1e9+; int main()
{
ll n,m;
scanf("%I64d%I64d",&n,&m);
ll ans=(n%MOD)*(m%MOD)%MOD;
ll temp=,las=m+;//记录哪些数没被减
m=min(n,m);//n 余大于 n 的都等于 n
ll nn=(ll)sqrt(n*1.0);
for (ll i=;i<=nn;i++)
{
ll l = n/(i+)+;
ll r = n/i; r=min(r,m);//可能 r 比 m 大
if (l>r) continue; las=min(las,l); ll s1=l+r , s2 =(r-l+);//这里高斯求和有个坑,要先判断哪个数可以除2,再乘
if (s1%==) s1/=; //直接用公式也不对,会超出ll限制
else s2/=;
s1%=MOD;s2%=MOD;
s1=(s1*s2)%MOD;
s1=s1*i%MOD;
temp=(temp+s1)%MOD;
}
ans=(ans+MOD-temp)%MOD;
for (ll i=;i<las;i++) //剩下的没被减得数,将n余之为0的最大整数减去
{
temp=n/i%MOD*i%MOD;
ans=(ans+MOD-temp)%MOD;
}
printf("%I64d\n",ans); return ;
}
Sum of Remainders(数学题)的更多相关文章
- codeforces 616E Sum of Remainders (数论,找规律)
E. Sum of Remainders time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学
E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...
- Codeforces 616E - Sum of Remainders
616E Sum of Remainders Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + - + n mod m. As ...
- Codeforces 616 E Sum of Remainders
Discription Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + ... + n mod m. As the resu ...
- Educational Codeforces Round 5 E. Sum of Remainders (思维题)
题目链接:http://codeforces.com/problemset/problem/616/E 题意很简单就不说了. 因为n % x = n - n / x * x 所以答案就等于 n * m ...
- codeforces 616E. Sum of Remainders 数学
题目链接 给两个数n, m. 求n%1+n%2+.......+n%m的值. 首先, n%i = n-n/i*i, 那么原式转化为n*m-sigma(i:1 to m)(n/i*i). 然后我们可以发 ...
- HDU-2058-The sum problem(数学题技巧型)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2058 思路: 这题的n,m都很大,很显然直接暴力,会超时,那就不能全部都找了,利用等差数列求和公式, ...
- hdu 2058 The sum problem(数学题)
一个数学问题:copy了别人的博客 #include<cstdio> #include<cstdlib> #include<cmath> int main() { ...
- 杭电ACM分类
杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...
随机推荐
- BAT文件使程序具有以系统权限运行的效果
@echo off if "%1" == "h" goto begin mshta vbscript:createobject("wscript.sh ...
- Git历险记(二)——Git的安装和配置
各位同学,上回Git历险记(一)讲了一个 “hello Git” 的小故事.有的同学可能是玩过了其它分布式版本控制系统(DVCS),看完之后就触类旁通对Git就了然于胸了:也有的同学可能还如我当初入手 ...
- 全国省会城市路网以及POI 数据
- pip virtualenv requirements
pip可以很方便的安装.卸载和管理Python的包.virtualenv则可以建立多个独立的虚拟环境,各个环境中拥有自己的python解释器和各自的package包,互不影响.pip和virtuale ...
- 【高级功能】使用 Ajax
Ajax 是现代Web 应用程序开发的一项关键工具.它让你能向服务器异步发送和接收数据,然后用 Javascript 解析. Ajax 是 Asynchronous JavaScript and XM ...
- 点击Div,显示其innerHTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Java的位运算
左移位操作 左移位运算的符号为[<<],左移位运算符左面的操作元称作被移位数,右面的操作数称作移位量. 左移位运算是双目运算符,操作元必须是整型类型的数据,其移动过程是:[a <&l ...
- selenium从入门到应用 - 2,简单线性脚本的编写
本系列所有代码 https://github.com/zhangting85/simpleWebtest 本文将介绍一个Java+TestNG+Maven+Selenium的web自动化测试脚本环境下 ...
- NSDate 类的总结,全面基础
<span style="font-size:24px;"><span style="font-size:18px;">//1.创建日期 ...
- window.name实现跨域数据传输
偶然间碰到个问题,通过JS给window.name赋值数组情况下,在firefox与chrome下会转换为字符串类型,在IE11下则显示正常.不说了,上图(firefox下): 代码: <scr ...