POJ-3565 Ants---KM算法+slack优化
题目链接:
https://vjudge.net/problem/POJ-3565
题目大意:
在坐标系中有N只蚂蚁,N棵苹果树,给你蚂蚁和苹果树的坐标。让每只蚂蚁去一棵苹果树,
一棵苹果树对应一只蚂蚁。这样就有N条直线路线,问:怎样分配,才能使总路程和最小,且
N条线不相交。
解题思路:
用一个图来说明思路。
假设A、B为蚂蚁,C、D为苹果树。则存在两种匹配:第一种是AD、BC,第二种是AC、BD。
根据三角形不等式AD+BC < AC+BD,最后得到很重要的一个性质——满足总路程之和最小
的方案一定不相交。现在来构建二分图,一边为蚂蚁,另一边为苹果树,以距离为边权值,题
目就变为了求带权二分图最小权和的最佳匹配。反向来思考,将距离乘以-1取负值建图,那么
就变为了求带权二分图最大权和的最佳匹配。直接用KM算法来做。
注意:用double,用slack数组优化(比全局变量快很多,网上看到说对于完全图优化会很快,用全局变量代替slack数组就超时)
#include<iostream>
#include<vector>
#include<cstring>
#include<queue>
#include<cmath>
#include<cstdio>
using namespace std;
const int maxn = + ;
const int INF = 0x3f3f3f3f;
double Map[maxn][maxn];
double wx[maxn], wy[maxn];//顶标值
int cx[maxn], cy[maxn];
//cx[i]表示与x部的点i匹配的y部的点的编号
//cy[i]表示与y部的点i匹配的x部的点的编号
bool visx[maxn], visy[maxn];//标记y部的点是否加入增广路
int cntx, cnty;//x部点的数目和y部点的数目
double minz;//边权顶标最小值
double slack[maxn];
bool dfs(int u)//进入的都是X部的点
{
visx[u] = ;
for(int v = ; v <= cnty; v++)
{
if(!visy[v] && Map[u][v] != INF)
{
double t = wx[u] + wy[v] - Map[u][v];
if(fabs(t) < 1e-)
{
visy[v] = ;
if(cy[v] == - || dfs(cy[v]))
{
cx[u] = v;
cy[v] = u;
return true;
}
}
else if(slack[v] > t)
slack[v] = t;
}
}
return false;
} void KM()
{
memset(cx, -, sizeof(cx));
memset(cy, -, sizeof(cy));
memset(wy, , sizeof(wy));
for(int i = ; i <= cntx; i++)wx[i] = -1.0 * INF;
for(int i = ; i <= cntx; i++)
{
for(int j = ; j <= cnty; j++)
{
wx[i] = max(wx[i], Map[i][j]);
}
}
for(int i = ; i <= cntx; i++)
{
for(int j = ; j <= cnty; j++)
slack[j] = INF;
while()
{
minz = 1.0 * INF;
memset(visx, , sizeof(visx));
memset(visy, , sizeof(visy));
if(dfs(i))break;
double d = INF;
for(int i = ; i <= cnty; i++)
if(!visy[i] && d > slack[i])
d = slack[i];
for(int j = ; j <= cntx; j++)
if(visx[j])wx[j] -= d;
for(int j = ; j <= cnty; j++)
if(visy[j])wy[j] += d;
else slack[j] -= d;
}
}
for(int i = ; i <= cntx; i++)
printf("%d\n", cx[i]);
}
struct node
{
double x, y;
}a[maxn], b[maxn];
double dis(node a, node b)
{
return -sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
int main()
{
int n;
scanf("%d", &n);
cntx = cnty = n;
for(int i = ; i <= n; i++)scanf("%lf%lf", &a[i].x, &a[i].y);
for(int i = ; i <= n; i++)scanf("%lf%lf", &b[i].x, &b[i].y);
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
Map[i][j] = dis(a[i], b[j]);
}
KM();
}
POJ-3565 Ants---KM算法+slack优化的更多相关文章
- poj3565 Ants km算法求最小权完美匹配,浮点权值
/** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求 ...
- poj 3565 uva 1411 Ants KM算法求最小权
由于涉及到实数,一定,一定不能直接等于,一定,一定加一个误差<0.00001,坑死了…… 有两种事物,不难想到用二分图.这里涉及到一个有趣的问题,这个二分图的完美匹配的最小权值和就是答案.为啥呢 ...
- POJ 3565 Ants 【最小权值匹配应用】
传送门:http://poj.org/problem?id=3565 Ants Time Limit: 5000MS Memory Limit: 65536K Total Submissions: ...
- KM算法及其优化的学习笔记&&bzoj2539: [Ctsc2000]丘比特的烦恼
感谢 http://www.cnblogs.com/vongang/archive/2012/04/28/2475731.html 这篇blog里提供了3个链接……基本上很明白地把KM算法是啥讲清楚 ...
- POJ 3565 Ants(最佳完美匹配)
Description Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on ...
- poj 3565 ants
/* poj 3565 递归分治 还有用KM的做法 这里写的分治 按紫书上的方法 不过那里说的有点冗杂了 可以简化一下 首先为啥可以分治 也就是分成子问题解决 只要有一个集合 黑白的个数相等 就一定能 ...
- 【POJ3565】ANTS KM算法
[POJ3565]ANTS 题意:平面上有2*n个点,N白N黑.为每个白点找一个黑点与之连边,最后所有边不交叉.求一种方案. 题解:KM算法真是一个神奇的算法,虽然感觉KM能做的题用费用流都能做~ 本 ...
- poj 2565 Ants (KM+思维)
Ants Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4125 Accepted: 1258 Special Ju ...
- POJ 3565 Ants (最小权匹配)
题意 给出一些蚂蚁的点,给出一些树的点,两两对应,使他们的连线不相交,输出一种方案. 思路 一开始没想到怎么用最小权匹配--后来发现是因为最小权匹配的方案一定不相交(三角形两边之和大于第三边)--还是 ...
随机推荐
- mysql中数据库与数据表编码格式的查看、创建及修改
一.查看数据库编码格式 ? 1 mysql> show variables like 'character_set_database'; 二.查看数据表的编码格式 ? 1 mysql> s ...
- SQL SERVER的update select语句的写法
需求: 要根据表A的数据来更新表B的某些字段,A和B要进行条件关联. 常规做法可能写个子查询 简单写法是用SQL Server的update select语法 update T_STOCK_INFO ...
- uva 10817(数位dp)
uva 10817(数位dp) 某校有m个教师和n个求职者,需讲授s个课程(1<=s<=8, 1<=m<=20, 1<=n<=100).已知每人的工资c(10000 ...
- 2、kubeadm快速部署kubernetes(v1.15.0)集群190623
一.网络规划 节点网络:192.168.100.0/24 Service网络:10.96.0.0/12 Pod网络(默认):10.244.0.0/16 二.组件分布及节点规划 master(192.1 ...
- thinkphp5实现文章上一篇,下一篇
写在控制器 //列表是按照根据id降序排列的,所以上一篇 $prv=Db::table('qy_article')->where('at_id','>',$at_id)->where ...
- centos7安装golang环境
1.下载golang安装包 wget https://dl.google.com/go/go1.12.5.linux-amd64.tar.gz 2.解压至/usr/local文件夹 tar -C /u ...
- Shell面试,笔试整理
1.经典Shell脚本面试问题:https://blog.csdn.net/hyszyl/article/details/60970307
- JavaScript和jquery中的宽度
Javascript: 网页可见区域宽: document.body.clientWidth 网页可见区域高: document.body.clientHeight 网页可见区域宽: document ...
- POJ1033 Defragment
题目来源:http://poj.org/problem?id=1033 题目大意: 某操作系统的文件系统中,所有的磁盘空间被分为N个大小相等的cluster,编号1至N.每个文件占用一个或多个clus ...
- js 数组,字符串,json互相转换(在select实现多个输入的时候与后台交互常使用)
数组转字符串 var arr = [1,2,3,4,'巴德','merge']; var str = arr.join(','); console.log(str); // 1,2,3,4,巴德,me ...