agc015F - Kenus the Ancient Greek(结论题)
题意
$Q$组询问,每次给出$[x, y]$,定义$f(x, y)$为计算$(x, y)$的最大公约数需要的步数,设$i \leqslant x, j \leqslant y$,求$max(f(i, j))$,以及$max(f(i, j))$不同的数对$(i, j)$的个数
Sol
结论题Orz
设$f(x, y)$表示$(x, y)$辗转相除需要的步数,$fib(i)$表示第$i$个斐波那契数
常识:$f(fib[i], fib[i+1]) = i$。
定义一个数对是“好的”,当且仅当对于$(x, y)$,不存在更小的$x', y'$使得$f(x', y') > f(x, y)$
显然我们需要统计的数对一定是好的数对
定义一个数对是“优秀的”,当且仅当对于$(x, y)$,若$f(x, y) = k$, 满足$x, y \leqslant fib[k+2] + fib[k-1]$
结论!:一个好的数对辗转相除一次后一定是优秀的数对!
证明可以用反证法,也就是我先假设一个$f(a, b) = i$是好的,但是得到的数对$(x, y)$满足$y > fib[k+2] + fib[k-1]$
但是这样我们会得到一个$x' = f[i+2], y' = f[i+2]$满足$f(x', y')>f(a, b)$,所以不成立
那么现在要做的就是求“优秀的”数对的个数。
考虑直接用欧几里得算法的定义递推即可
不过代码是真·难写啊,去网上copy一份吧。。。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#define Pair pair<LL, LL>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define int long long
using namespace std;
const int MAXN = 1e6 + , B = , mod = 1e9 + ;
inline LL read() {
char c = getchar(); LL x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
vector<Pair> v[B + ];
LL f[B + ];
void Pre() {
f[] = f[] = ;
for(int i = ; i <= B; i++) f[i] = f[i - ] + f[i - ];
v[].push_back(MP(, )); v[].push_back(MP(, )); v[].push_back(MP(, ));
for(int i = ; i <= B - ; i++) {
for(int j = ; j < v[i].size(); j++) {
LL x = v[i][j].fi, y = v[i][j].se;
LL tmp = x; x = y; y = tmp + y;
while(y <= f[i + ] + f[i - ]) v[i + ].push_back(MP(x, y)), y += x;
}
}
}
main() {
// freopen("1.in", "r", stdin);
Pre();
int Q = read();
while(Q--) {
LL x = read(), y = read(), K;
if(x > y) swap(x, y);
for(K = ; f[K + ] <= x && f[K + ] <= y; K++);
cout << K << " ";
if(K == ) {cout << x * y % mod << endl; continue;}
LL ans = ;
for(int i = ; i < v[K - ].size(); i++) {
LL a = v[K - ][i].fi, b = v[K - ][i].se;
// printf("%I64d %I64d\n", a, b);
if(b <= x) ans += (y - a) / b % mod;
if(b <= y) ans += (x - a) / b % mod;
//if(a + b <= x && b <= y) ans++;
//if(a + b <= y && a <= x) ans++;
ans %= mod;
}
cout << ans % mod<< endl;
}
return ;
}
agc015F - Kenus the Ancient Greek(结论题)的更多相关文章
- agc015F Kenus the Ancient Greek
题意: 有$Q$次询问,每次给定$X_i$和$Y_i$,求对于$1\leq x \leq X_i , 1 \leq y \leq Y_i$,$(x,y)$进行辗转相除法的步数的最大值以及取到最大值的方 ...
- [AT2384] [agc015_f] Kenus the Ancient Greek
题目链接 AtCoder:https://agc015.contest.atcoder.jp/tasks/agc015_f 洛谷:https://www.luogu.org/problemnew/sh ...
- Atcoder Grand Contest 015 F - Kenus the Ancient Greek(找性质+乱搞)
洛谷题面传送门 & Atcoder 题面传送门 一道难度 Au 的 AGC F,虽然看过题解之后感觉并不复杂,但放在现场确实挺有挑战性的. 首先第一问很简单,只要每次尽量让"辗转相除 ...
- [codevs5578][咸鱼]tarjan/结论题
5578 咸鱼 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 在广袤的正方形土地上有n条水平的河流和m条垂直的河流,发达的咸鱼家族在m*n个河流交叉点都 ...
- BZOJ_1367_[Baltic2004]sequence_结论题+可并堆
BZOJ_1367_[Baltic2004]sequence_结论题+可并堆 Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- 【uoj#282】长度测量鸡 结论题
题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...
- 【uoj#175】新年的网警 结论题+Hash
题目描述 给出一张 $n$ 个点 $m$ 条边的无向连通图,每条边的边权为1.对于每个点 $i$ ,问是否存在另一个点 $j$ ,使得对于任意一个不为 $i$ 或 $j$ 的点 $k$ ,$i$ 到 ...
- 【uoj#180】[UR #12]实验室外的攻防战 结论题+树状数组
题目描述 给出两个长度为 $n$ 的排列 $A$ 和 $B$ ,如果 $A_i>A_{i+1}$ 则可以交换 $A_i$ 和 $A_{i+1}$ .问是否能将 $A$ 交换成 $B$ . 输入 ...
随机推荐
- R语言中的字符处理
R语言中的字符处理 (2011-07-10 22:29:48) 转载▼ 标签: r语言 字符处理 字符串 连接 分割 分类: R R的字符串处理能力还是很强大的,具体有base包的几个函数和strin ...
- mahout过滤推荐结果 Recommender.recommend(long userID, int howMany, IDRescorer rescorer)
Recommender.recommend(uid, RECOMMENDER_NUM, rescorer); Recommender.recommend(long userID, int howMan ...
- kafka学习之相关命令
1 分别启动zoo和kafka ./zkServer.sh start 然后需要使用./zkServer.sh status查看状态,会发现一个奇怪得问题,即使start启动的时候表示启动成功,但是s ...
- HDU 5862 Counting Intersections (离散化+扫描线+树状数组)
题意:给你若干个平行于坐标轴的,长度大于0的线段,且任意两个线段没有公共点,不会重合覆盖.问有多少个交点. 析:题意很明确,可是并不好做,可以先把平行与x轴和y轴的分开,然后把平行y轴的按y坐标从小到 ...
- 第一周作业-Linux基础入门
写在前面 实验楼中linux基础入门的内容很多,几乎涵盖了所有的常用命令.命令的记忆不是一朝一夕的,更不能死记硬背,在实践中多操作,熟悉后自然就记住了.我没有将对每个命令操作结果都截图记录下来(事实上 ...
- 将一个mapList转换为beanList
public static <T> List<T> copyMapToBean( List<Map<String, Object>> resultM ...
- 开发一个android项目后的总结
首先是自己在OneNote上面记录了一些流水: 个人感觉这一路开发下来,学到了一些知识,也碰到了许许多多的问题,也解决了一些问题.总体来看,有几点(个人观点,不支持任何讨论): 1.Java是很优秀的 ...
- Mybatis学习笔记之一——牛刀小试
1.Mybaits核心对象SqlSession的作用: (1)向SQL语句传入参数: (2)执行SQl语句: (3)获取执行SQL语句的结果: (4)事务的控制: 2.核心配置文件(Configrat ...
- spark 机器学习 朴素贝叶斯 实现(二)
已知10月份10-22日网球场地,会员打球情况通过朴素贝叶斯算法,预测23,24号是否适合打网球.结果,日期,天气 温度 风速结果(0否,1是)天气(0晴天,1阴天,2下雨)温度(0热,1舒适,2冷) ...
- Docker容器构建过程的安全性分析
来源:嘶吼专业版 ID:Pro4hou DevOps概念的流行跟近些年微服务架构的兴起有很大关系,DevOps是Dev(Development)和Ops(Operations)的结合,Dev负责开发, ...