原文地址:http://www.cnblogs.com/GXZlegend/p/6805252.html


bzoj3809

题目描述

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数。

输入

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
第二行包括n个整数s1...sn(1<=si<=n)。
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
保证涉及的所有数在C++的int内。
保证输入合法。

输出

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

样例输入

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

样例输出

2
0
0
2
1
1
1
0
1
2

bzoj3236

题目描述

同上,只是多求了一个大小在[a,b]范围内数的个数(非数的种类数,即可以重复计算)


题解

莫队算法+分块,几乎是双倍经验

一个很显然的方法是莫队算法+树状数组,然而修改次数为n√n,修改时间为O(logn),会TLE。

由于查询次数比较少,所以可以想办法将修改时间减少,相应的增加查询时间。

这可以使用分块。

将美丽度(权值)分块,并记录每块中权值的种类数,这样在查询时只需要先找中间的块,再暴力找两边即可。

修改总时间复杂度为O(n√n*1),查询总时间复杂度为O(n*√n)。

注意查询时对两端在同一块中的特判。

对于bzoj3236,数的个数同样可以分块来求,而且相比求数的种类数更简单。

bzoj3809:

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
struct data
{
int l , r , x , y , id;
}a[1000010];
int v[100010] , cnt[100010] , num[410] , si , ans[1000010];
bool cmp(data a , data b)
{
return (a.l - 1) / si == (b.l - 1) / si ? a.r < b.r : (a.l - 1) / si < (b.l - 1) / si;
}
int main()
{
int n , m , i , j , lp = 1 , rp = 0;
scanf("%d%d" , &n , &m) , si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &v[i]);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d%d" , &a[i].l , &a[i].r , &a[i].x , &a[i].y) , a[i].id = i;
sort(a + 1 , a + m + 1 , cmp);
for(i = 1 ; i <= m ; i ++ )
{
while(lp > a[i].l) lp -- , num[(v[lp] - 1) / si] += (!cnt[v[lp]]) , cnt[v[lp]] ++ ;
while(rp < a[i].r) rp ++ , num[(v[rp] - 1) / si] += (!cnt[v[rp]]) , cnt[v[rp]] ++ ;
while(lp < a[i].l) cnt[v[lp]] -- , num[(v[lp] - 1) / si] -= (!cnt[v[lp]]) , lp ++ ;
while(rp > a[i].r) cnt[v[rp]] -- , num[(v[rp] - 1) / si] -= (!cnt[v[rp]]) , rp -- ;
if((a[i].x - 1) / si == (a[i].y - 1) / si)
for(j = a[i].x ; j <= a[i].y ; j ++ )
ans[a[i].id] += (cnt[j] > 0);
else
{
for(j = (a[i].x - 1) / si + 1 ; j < (a[i].y - 1) / si ; j ++ ) ans[a[i].id] += num[j];
for(j = a[i].x ; j <= ((a[i].x - 1) / si + 1) * si ; j ++ ) ans[a[i].id] += (cnt[j] > 0);
for(j = (a[i].y - 1) / si * si + 1 ; j <= a[i].y ; j ++ ) ans[a[i].id] += (cnt[j] > 0);
}
}
for(i = 1 ; i <= m ; i ++ ) printf("%d\n" , ans[i]);
return 0;
}

bzoj3236,可以看到只有极小部分改动:

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
struct data
{
int l , r , x , y , id;
}a[1000010];
int v[100010] , cnt[100010] , num[410] , sum[401] , si , ans1[1000010] , ans2[1000010];
bool cmp(data a , data b)
{
return (a.l - 1) / si == (b.l - 1) / si ? a.r < b.r : (a.l - 1) / si < (b.l - 1) / si;
}
int main()
{
int n , m , i , j , lp = 1 , rp = 0;
scanf("%d%d" , &n , &m) , si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &v[i]);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d%d" , &a[i].l , &a[i].r , &a[i].x , &a[i].y) , a[i].id = i;
sort(a + 1 , a + m + 1 , cmp);
for(i = 1 ; i <= m ; i ++ )
{
while(lp > a[i].l) lp -- , num[(v[lp] - 1) / si] += (!cnt[v[lp]]) , sum[(v[lp] - 1) / si] ++ , cnt[v[lp]] ++ ;
while(rp < a[i].r) rp ++ , num[(v[rp] - 1) / si] += (!cnt[v[rp]]) , sum[(v[rp] - 1) / si] ++ , cnt[v[rp]] ++ ;
while(lp < a[i].l) cnt[v[lp]] -- , num[(v[lp] - 1) / si] -= (!cnt[v[lp]]) , sum[(v[lp] - 1) / si] -- , lp ++ ;
while(rp > a[i].r) cnt[v[rp]] -- , num[(v[rp] - 1) / si] -= (!cnt[v[rp]]) , sum[(v[rp] - 1) / si] -- , rp -- ;
if((a[i].x - 1) / si == (a[i].y - 1) / si)
for(j = a[i].x ; j <= a[i].y ; j ++ )
ans1[a[i].id] += cnt[j] , ans2[a[i].id] += (cnt[j] > 0);
else
{
for(j = (a[i].x - 1) / si + 1 ; j < (a[i].y - 1) / si ; j ++ ) ans1[a[i].id] += sum[j] , ans2[a[i].id] += num[j];
for(j = a[i].x ; j <= ((a[i].x - 1) / si + 1) * si ; j ++ ) ans1[a[i].id] += cnt[j] , ans2[a[i].id] += (cnt[j] > 0);
for(j = (a[i].y - 1) / si * si + 1 ; j <= a[i].y ; j ++ ) ans1[a[i].id] += cnt[j] , ans2[a[i].id] += (cnt[j] > 0);
}
}
for(i = 1 ; i <= m ; i ++ ) printf("%d %d\n" , ans1[i] , ans2[i]);
return 0;
}

【bzoj3809/bzoj3236】Gty的二逼妹子序列/[Ahoi2013]作业 莫队算法+分块的更多相关文章

  1. 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块

    [BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...

  2. 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1072  Solved: 292[Submit][Status][Di ...

  3. 【bzoj3809】Gty的二逼妹子序列

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  4. 【BZOJ3809】Gty的二逼妹子序列 莫队 分块

    题目描述 给你一个长度为\(n\)的数列,还有\(m\)个询问,对于每个询问\((l,r,a,b)\),输出区间\([l,r]\)有多少范围在\([a,b]\)的权值. \(n\leq 100000, ...

  5. 莫队p2 【bzoj3809】Gty的二逼妹子序列

    发现一篇已经够长了...所以就放在这里吧... http://hzwer.com/5749.html ↑依然是看大牛题解过的   袜子那道题太简单了.... 然后被这道题超时卡了一段时间....... ...

  6. BZOJ3809:Gty的二逼妹子序列

    浅谈莫队:https://www.cnblogs.com/AKMer/p/10374756.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...

  7. [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业

    [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业 bzoj   bzoj 题目大意:一个序列,m个询问在$[l,r]$区间的$[x,y]$范围内的数的个数/种类. ...

  8. [bzoj3809]Gty的二逼妹子序列_莫队_分块

    Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...

  9. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

随机推荐

  1. Linux 中将用户添加到指定组的指令

    将一个已有用户 testuser 增加到一个已有用户组 root 中,使此用户组成为该用户的附加用户组,可以使用带 -a 参数的 usermod  指令.-a 代表 append, 也就是将用户添加到 ...

  2. MFC项目依赖 BCG框架示例

    1.创建一个简单的MFC工程: 2.将BCG框架项目导入到新建的mfc解决方案中,例如将BCGCBPro\BCGCBPRO140.vcxproj添加到解决方案. 3.修改mfc项目属性,包含BCG框架 ...

  3. 在ubuntu中docker的简单使用(一)

    >>docker version 当运行docker version 命令出现Cannot connect to Docker daemon. Is the docker daemon r ...

  4. 用FileReader对象获取图片base64代码并预览

    MDN中FileReader的详细介绍: https://developer.mozilla.org/zh-CN/docs/Web/API/FileReader 用FileReader获取图片base ...

  5. STL 之 set的应用

    关于set Set是STL中的一个容器,特点是其中包含的元素值是唯一的,set根据其底层实现机制分为hash存储和红黑树存储两种方式,这两种结构最本质的区别就是有序和无序,红黑树的存储是有序的而has ...

  6. 【MYSQL笔记1】mysql的基础知识

    首先进去mysql.打开电脑命令提示符(cmd):输入mysql -uroot -p   代表的意思是使用ruser使用者root的方式,打开mysql,-p代表password,如果有的话,回车之后 ...

  7. Linux新建用户后的必要设置

    系统:ubnutu 18.04  x64 以下操作全在root下 准备工作: 新建用户  useradd  -m  tom 初始化密码  passwd  tom 1. tab按键 不能自动单词不全 # ...

  8. linux 基本命令笔记

    nohup [process]  & 后台挂起命令nohup 挂起& 后台运行 python3 manage.py runserver 0.0.0.0:8080 python -r 递 ...

  9. GNU汇编 伪指令

    伪指令 本身并没有所对应的机器码 它只是在编译的时候起作用,或者转换为其他的实际指令来运行 global ascii byte word data equ align @ 下面的例子是在数据段存放数据 ...

  10. array_unique() - 去除数组中重复的元素值

      array_unique() 定义和用法 array_unique() 函数移除数组中的重复的值,并返回结果数组. 当几个数组元素的值相等时,只保留第一个元素,其他的元素被删除. 返回的数组中键名 ...