题目描述

给你n个数,从中选出两个不相交非空集合S和T,使得S中的每一个元素都在T集合的前面,并且S集合中的所有数的亦或等于T集合中的所有数的与,求方案数 mod 10^9+7。

输入

The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains a integers n.
The next line contains n integers a_1,a_2,...,a_n which are separated by a single space.
n<=10^3, 0 <= a_i <1024, T<=20.

输出

For each test case, output the result in one line.

样例输入

2
3
1 2 3
4
1 2 3 3

样例输出

1
4


题解

dp

设$s[i][j]$表示前$i$个数选$i$,选出的数的亦或为$j$的方案数,那么直接使用前缀和优化,转移时枚举之前的$j$,与当前位置计算得出新的$j$即可。

设$t[i][j]$表示从$i$到$n$选$i$,选出的数的与为$j$的方案数,那么转移同理。

最后枚举$S$/$T$集合的第一个数,使用乘法原理计算即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define m 1024
#define mod 1000000007
using namespace std;
int a[m] , fs[m][m] , ss[m][m] , ft[m][m] , st[m][m];
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
int n , i , j , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]);
memset(fs , 0 , sizeof(fs)) , memset(ss , 0 , sizeof(ss));
memset(ft , 0 , sizeof(ft)) , memset(st , 0 , sizeof(st));
ss[0][0] = st[n + 1][m - 1] = 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 0 ; j < m ; j ++ ) fs[i][j ^ a[i]] = (fs[i][j ^ a[i]] + ss[i - 1][j]) % mod;
for(j = 0 ; j < m ; j ++ ) ss[i][j] = (ss[i - 1][j] + fs[i][j]) % mod;
}
for(i = n ; i ; i -- )
{
for(j = 0 ; j < m ; j ++ ) ft[i][j & a[i]] = (ft[i][j & a[i]] + st[i + 1][j]) % mod;
for(j = 0 ; j < m ; j ++ ) st[i][j] = (st[i + 1][j] + ft[i][j]) % mod;
}
for(i = 1 ; i < n ; i ++ )
{
ss[i][0] -- ;
for(j = 0 ; j < m ; j ++ ) ans = (ans + (long long)ss[i][j] * ft[i + 1][j]) % mod;
}
printf("%d\n" , ans);
}
return 0;
}

【bzoj3866】The Romantic Hero dp的更多相关文章

  1. 【BZOJ4712】洪水(动态dp)

    [BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开 ...

  2. 【题解】Jury Compromise(链表+DP)

    [题解]Jury Compromise(链表+DP) 传送门 题目大意 给你\(n\le 200\)个元素,一个元素有两个特征值,\(c_i\)和\(d_i\),\(c,d \in [0,20]\), ...

  3. 【题解】Making The Grade(DP+结论)

    [题解]Making The Grade(DP+结论) VJ:Making the Grade HNOI-D2-T3 原题,禁赛三年. 或许是我做过的最简单的DP题了吧(一遍过是什么东西) 之前做过关 ...

  4. 【题解】NOIP2017逛公园(DP)

    [题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n​节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...

  5. 【题解】284E. Coin Troubles(dp+图论建模)

    [题解]284E. Coin Troubles(dp+图论建模) 题意就是要你跑一个完全背包,但是要求背包的方案中有个数相对大小的限制 考虑一个\(c_i<c_j\)的限制,就是一个\(c_i\ ...

  6. 【CF917D】Stranger Trees 树形DP+Prufer序列

    [CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...

  7. 【CF840C】On the Bench DP

    [CF840C]On the Bench 题意:给你一个长度为n的数组{ai},定义一个1到n的排列是合法的,当且仅当对于$1\le i <n$,$a_i\times a_{i+1}$不是完全平 ...

  8. 【CF889E】Mod Mod Mod DP

    [CF889E]Mod Mod Mod 题意:给你一个序列$a_1,a_2...a_n$,定义$f(x,n)=x\mod a_n$,$f(x,i)=x\mod a_i+f(x \mod a_i,i+1 ...

  9. 【BZOJ1210】[HNOI2004]邮递员 插头DP+高精度

    [BZOJ1210][HNOI2004]邮递员 Description Smith在P市的邮政局工作,他每天的工作是从邮局出发,到自己所管辖的所有邮筒取信件,然后带回邮局.他所管辖的邮筒非常巧地排成了 ...

随机推荐

  1. 前端HTML基础

    1.0开发工具介绍 sublime的使用技巧链接 HTML特殊符号表 1.1 html概念 超文本标记语言(Hypertext Markup Language),属于一种描述性的标记语言(markup ...

  2. 分享spring、spring boot、spring cloud一些学习资源,从基础知识到项目实战

    1.spring注解驱动开发,学习spring boot和spring cloud必备知识 链接: https://pan.baidu.com/s/1xhULzLlpkERhoMi1G5Lgfg 密码 ...

  3. Java OOP——第五章 异常

    1. 尝试通过if-else来解决异常问题: Eg: public class Test2 {       public static void main(String[] args) {       ...

  4. 特殊sql查询方法实例

    一.if条件查询:SELECT sum(if(is_buy > 0 ,1,0)) AS friend_count_all_cj, sum(if(is_buy = 0 ,1,0)) AS frie ...

  5. 笔记--tslib 编译

    tslib 是qt启动时的一个触屏校正检验程序. 它的配置以及编译比较简单. 第一步, 下载tslib源码包: http://download.csdn.net/detail/MKNDG/329156 ...

  6. 【异常】The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents more than one time zone.

    异常错误:The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents more than one time zone ...

  7. Robots Gym - 101915G

    传送门 The Robotics Olympiad teams were competing in a contest. There was a tree drawn on the floor, co ...

  8. 笔记-scrapy-Request/Response

    笔记-scrapy-Request/Response 1.     简介 Scrapy使用Request和Response来爬取网站. 2.     request class scrapy.http ...

  9. 算法学习记录-图——应用之关键路径(Critical Path)

    之前我们介绍过,在一个工程中我们关心两个问题: (1)工程是否顺利进行 (2)整个工程最短时间. 之前我们优先关心的是顶点(AOV),同样我们也可以优先关心边(同理有AOE).(Activity On ...

  10. luoguP1726 上白泽慧音

    P1726 上白泽慧音 题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村 ...