从树上启发式合并搜出来的题

然而看着好像线段树合并就能解决???

那么就用线段树合并解决吧

维护\(max, sum\)表示值域区间中的一个数出现次数的最大值以及所有众数的和即可

复杂度\(O(n \log n)\)


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) #define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
} const int sid = 4e5 + 5; int n, cnp, id;
ll sum[sid], ans[sid];
int rt[sid], ls[sid], rs[sid], mx[sid], c[sid];
int cap[sid], nxt[sid], node[sid]; inline void addedge(int u, int v) {
nxt[++ cnp] = cap[u]; cap[u] = cnp; node[cnp] = v;
} inline void insert(int &o, int l, int r, int v) {
o = ++ id;
mx[o] = 1; sum[o] = v;
if(l == r) return;
int mid = (l + r) >> 1;
if(v <= mid) insert(ls[o], l, mid, v);
else insert(rs[o], mid + 1, r, v);
} inline void upd(int o) {
int lc = ls[o], rc = rs[o];
mx[o] = mx[lc]; sum[o] = sum[lc];
if(mx[rc] == mx[o]) sum[o] += sum[rc];
else if(mx[rc] > mx[o]) mx[o] = mx[rc], sum[o] = sum[rc];
} inline int merge(int x, int y, int l, int r) {
if(!x || !y) return x + y;
if(l == r) { mx[x] += mx[y]; return x; }
int mid = (l + r) >> 1;
ls[x] = merge(ls[x], ls[y], l, mid);
rs[x] = merge(rs[x], rs[y], mid + 1, r);
upd(x);
return x;
} #define cur node[i]
inline void dfs(int o, int fa) {
insert(rt[o], 1, n, c[o]);
for(int i = cap[o]; i; i = nxt[i])
if(cur != fa) {
dfs(cur, o);
rt[o] = merge(rt[o], rt[cur], 1, n);
}
ans[o] = sum[rt[o]];
} int main() {
n = read();
rep(i, 1, n) c[i] = read();
rep(i, 2, n) {
int u = read(), v = read();
addedge(u, v); addedge(v, u);
}
dfs(1, 0);
rep(i, 1, n) printf("%lld ", ans[i]);
return 0;
}

CodeForces600E Lomsat gelral 线段树合并的更多相关文章

  1. codeforces 600E . Lomsat gelral (线段树合并)

    You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...

  2. CF600E:Lomsat gelral(线段树合并)

    Description 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. Input 第一行一个$n$.第二行$n$个数字是$c[i]$.后面$n-1$ ...

  3. CF600E Lomsat gelral——线段树合并/dsu on tree

    题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...

  4. codeforces 600E E. Lomsat gelral (线段树合并)

    codeforces 600E E. Lomsat gelral 传送门:https://codeforces.com/contest/600/problem/E 题意: 给你一颗n个节点的树,树上的 ...

  5. CF600E Lomsat gelral 【线段树合并】

    题目链接 CF600E 题解 容易想到就是线段树合并,维护每个权值区间出现的最大值以及最大值位置之和即可 对于每个节点合并一下两个子节点的信息 要注意叶子节点信息的合并和非叶节点信息的合并是不一样的 ...

  6. CF600E Lomsat gelral (线段树合并)

    相当于是线段树合并的模板题,比(雨天的尾巴)还要板. 唯一注意的是线段树的更新,因为同一子树中可能有多种颜色占主导地位,要输出编号和,比如一颗子树中,1出现3次(最多),3出现3次,那么应该输出4. ...

  7. [Codeforces600E] Lomsat gelral(树上启发式合并)

    [Codeforces600E] Lomsat gelral(树上启发式合并) 题面 给出一棵N个点的树,求其所有子树内出现次数最多的颜色编号和.如果多种颜色出现次数相同,那么编号都要算进答案 N≤1 ...

  8. [XJOI NOI2015模拟题13] C 白黑树 【线段树合并】

    题目链接:XJOI - NOI2015-13 - C 题目分析 使用神奇的线段树合并在 O(nlogn) 的时间复杂度内解决这道题目. 对树上的每个点都建立一棵线段树,key是时间(即第几次操作),动 ...

  9. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

随机推荐

  1. G - Pandaland HDU - 6005 (找最小环)

    题目链接:https://cn.vjudge.net/contest/275153#problem/G 具体思路: 我们可以按照暴力的方法进行做 , 我们可以枚举每一条边,将这条边的权值设置为inf, ...

  2. 十大opengl教程

    正文: 1. http://nehe.gamedev.net/ 这个是我觉得全世界最着名的OpenGL教程,并且有网友将其中48个教程翻译成了中文http://www.owlei.com/Dancin ...

  3. 关于UDP数据报引发“异步错误”的疑问

    在UNP卷一第三版的第8章8.9小节中说到:如果udp服务器没有启动,udp客户端在使用sendto发送一行文本后,将会等待一个永远也不会出现的应答从而阻塞在recvfrom调用上. 由于服务器段不存 ...

  4. torch.Tensor.view (Python method, in torch.Tensor)

    返回具有相同数据但大小不同的新张量.返回的张量共享相同的数据,必须具有相同数量的元素,但可能有不同的大小. Example >>> x = torch.randn(4, 4) > ...

  5. 1->小规模集群架构规划

    "配置无人值守批量安装系统(Cobbler)" "搭建PPTP VPN/ NTP/Firewalld内部共享上网 " "搭建跳板机服务jumpserv ...

  6. 说一下怎么搭建外网来访问SVN服务器

    一.搭建SVN服务器 1.所需软件 TortoiseSVN,下载地址http://tortoisesvn.net/downloads.html TortoiseSVN中文语言包,下载地址http:// ...

  7. 【h5标签转小程序标签】小程序使用wxParse解析html教程

    一.先下载所需文件,下载地址:https://pan.baidu.com/s/1umZO9uI24zUTRd7VqaWbAg  ,下载完毕后会得到一个wxParse文件夹,后面会用到: 二.先拷贝cs ...

  8. getch与getchar区别

    getch(): 所在头文件:conio.h 函数用途:从控制台读取一个字符,但不显示在屏幕上 getchar(): 所在头文件:stdio.h getch与getchar基本功能相同,差别是getc ...

  9. BFS && DFS

    HDOJ 1312 Red and Black http://acm.hdu.edu.cn/showproblem.php?pid=1312 很裸的dfs,在dfs里面写上ans++,能到几个点就调了 ...

  10. Elasticsearch: 权威指南---基础入门

    1.查看方式:GETURL:http://10.10.6.225:9200/?pretty pretty 在任意的查询字符串中增加pretty参数.会让Elasticsearch美化输出JSON结果以 ...