[2018HN省队集训D1T1] Tree

题意

给定一棵带点权树, 要求支持下面三种操作:

  • 1 rootroot 设为根.
  • 2 u v d 将以 \(\operatorname{LCA} (u,v)\) 为根的子树中的点权值加上 \(d\).
  • 3 u 查询以 \(u\) 为根的子树中的点的权值之和.

初始时根为 \(1\).

\(n,q\le3\times 10^5\)

时限 \(1\texttt{s}\).

题解

垃圾卡常题毁我青春

写这个题解主要是存板子的...毕竟LCT上比较科学优雅地实现LCA需要改板子...但是我的LCT长得比较滑稽没几个人写得和我一样

考场上主要思路是当成把换根子树修改和换根LCA分开算, 子树修改可以对DFS序建线段树解决. 具体做法是分类讨论新根 \(p\) /原来的根 \(r\) /要修改的子树的根 \(u\) 三个点的位置关系. 若 \(u\) 不在 \(p\) 到 \(r\) 的路径上, 那么直接修改 \(u\) 在以 \(r\) 为根的子树即可. 否则设 \(u\rightarrow v \leadsto r\), 那么除了 \(v\) 的子树之外的所有点都要修改, 分两段解决或者先整体加再子树减也可以.

换根LCA是LCT的标准操作. 比较科学地求LCA需要在 Access 的时候返回最后一次连接的虚边的父亲侧结点, 就可以两次 Access 求出LCA了.

考场上打完没过样例发现Access的时候把虚子树连到Splay左儿子去了囧...

然后这题数据丧病地出到了 3e5 所以需要常数优化一下比如加个快读3e5的读入量还不加快读显然是自己作死吧

参考代码

#include <bits/stdc++.h>

const int MAXE=1e6+10;
const int MAXV=3e5+10;
typedef long long intEx; struct Edge{
int from;
int to;
Edge* next;
};
Edge E[MAXE];
Edge* head[MAXV];
Edge* top=E; struct LCT{
#define lch chd[0]
#define rch chd[1]
#define kch chd[k]
#define xch chd[k^1]
struct Node{
int id;
bool rev;
Node* prt;
Node* pprt;
Node* chd[2];
Node(int id):id(id),rev(false),prt(NULL),pprt(NULL),chd{NULL,NULL}{}
inline void Flip(){
if(this!=NULL){
this->rev=!this->rev;
std::swap(this->lch,this->rch);
}
}
inline void PushDown(){
if(this!=NULL&&this->rev){
this->lch->Flip();
this->rch->Flip();
this->rev=false;
}
}
};
std::vector<Node*> N;
LCT(int n):N(n+1){
for(int i=1;i<=n;i++)
N[i]=new Node(i);
}
inline void Rotate(Node* root,int k){
Node* tmp=root->xch;
root->PushDown();
tmp->PushDown();
tmp->prt=root->prt;
if(root->prt==NULL){
tmp->pprt=root->pprt;
root->pprt=NULL;
}
else if(root->prt->lch==root)
root->prt->lch=tmp;
else
root->prt->rch=tmp;
root->xch=tmp->kch;
if(root->xch!=NULL)
root->xch->prt=root;
tmp->kch=root;
root->prt=tmp;
}
inline void Splay(Node* root){
while(root->prt!=NULL){
int k=root->prt->lch==root;
if(root->prt->prt==NULL)
Rotate(root->prt,k);
else{
int d=root->prt->prt->lch==root->prt;
Rotate(k==d?root->prt->prt:root->prt,k);
Rotate(root->prt,d);
}
}
}
inline void Expose(Node* root){
Splay(root);
root->PushDown();
if(root->rch!=NULL){
root->rch->prt=NULL;
root->rch->pprt=root;
root->rch=NULL;
}
}
inline Node* Access(Node* root){
Expose(root);
Node* ret=root;
while(root->pprt!=NULL){
ret=root->pprt;
Expose(root->pprt);
root->pprt->rch=root;
root->prt=root->pprt;
root->pprt=NULL;
Splay(root);
}
return ret;
}
inline void Evert(Node* root){
Access(root);
Splay(root);
root->Flip();
}
inline void Evert(int root){
Evert(N[root]);
}
inline void Link(int prt,int son){
Evert(N[son]);
N[son]->pprt=N[prt];
}
inline int LCA(int x,int y){
Access(N[x]);
return Access(N[y])->id;
}
#undef lch
#undef rch
#undef kch
#undef xch
}; struct Node{
int l;
int r;
intEx add;
intEx sum;
Node* lch;
Node* rch;
Node(int,int);
void Maintain();
void PushDown();
intEx Query(int,int);
void Add(const intEx&);
void Add(int,int,const intEx&);
}; int n;
int q;
int clk;
int val[MAXV];
int pos[MAXV];
int dfn[MAXV];
int deep[MAXV];
int size[MAXV];
int prt[20][MAXV]; void ReadInt(int&);
void Insert(int,int);
int Ancestor(int,int);
void DFS(int,int,int); int main(){
ReadInt(n);
ReadInt(q);
for(int i=1;i<=n;i++)
ReadInt(val[i]);
LCT* T=new LCT(n);
for(int i=1;i<n;i++){
int a,b;
ReadInt(a);
ReadInt(b);
Insert(a,b);
Insert(b,a);
T->Link(a,b);
}
DFS(1,0,0);
for(int i=1;(1<<i)<=n;i++)
for(int j=1;j<=n;j++)
prt[i][j]=prt[i-1][prt[i-1][j]];
Node* N=new Node(1,n);
T->Evert(1);
int root=1;
for(int i=0;i<q;i++){
int t;
ReadInt(t);
if(t==1){
ReadInt(root);
T->Evert(root);
}
else if(t==2){
int a,b,d;
ReadInt(a);
ReadInt(b);
ReadInt(d);
int lca=T->LCA(a,b);
if(lca==root)
N->Add(1,n,d);
else if(deep[lca]>=deep[root])
N->Add(dfn[lca],dfn[lca]+size[lca]-1,d);
else if(Ancestor(root,deep[root]-deep[lca])==lca){
int x=Ancestor(root,deep[root]-deep[lca]-1);
N->Add(1,n,d);
N->Add(dfn[x],dfn[x]+size[x]-1,-d);
}
else
N->Add(dfn[lca],dfn[lca]+size[lca]-1,d);
}
else if(t==3){
int r;
ReadInt(r);
intEx ans=0;
if(r==root)
ans=N->Query(1,n);
else if(deep[r]>=deep[root])
ans=N->Query(dfn[r],dfn[r]+size[r]-1);
else if(Ancestor(root,deep[root]-deep[r])==r){
int x=Ancestor(root,deep[root]-deep[r]-1);
ans+=N->Query(1,n);
ans-=N->Query(dfn[x],dfn[x]+size[x]-1);
}
else
ans=N->Query(dfn[r],dfn[r]+size[r]-1);
printf("%lld\n",ans);
}
}
return 0;
} inline int Ancestor(int cur,int k){
for(int i=0;(1<<i)<=k;i++)
if((1<<i)&k)
cur=prt[i][cur];
return cur;
} void DFS(int root,int prt,int deep){
::size[root]=1;
::dfn[root]=++clk;
::deep[root]=deep;
::prt[0][root]=prt;
::pos[dfn[root]]=root;
for(Edge* i=head[root];i!=NULL;i=i->next){
if(i->to!=prt){
DFS(i->to,root,deep+1);
size[root]+=size[i->to];
}
}
} inline void Insert(int from,int to){
top->from=from;
top->to=to;
top->next=head[from];
head[from]=top++;
} Node::Node(int l,int r):l(l),r(r),add(0),lch(NULL),rch(NULL){
if(l==r)
sum=val[pos[l]];
else{
int mid=(l+r)>>1;
this->lch=new Node(l,mid);
this->rch=new Node(mid+1,r);
this->sum=this->lch->sum+this->rch->sum;
}
} void Node::Add(int l,int r,const intEx& d){
if(l<=this->l&&this->r<=r)
this->Add(d);
else{
this->PushDown();
if(l<=this->lch->r)
this->lch->Add(l,r,d);
if(this->rch->l<=r)
this->rch->Add(l,r,d);
this->Maintain();
}
} intEx Node::Query(int l,int r){
if(l<=this->l&&this->r<=r)
return this->sum;
else{
this->PushDown();
if(r<=this->lch->r)
return this->lch->Query(l,r);
if(this->rch->l<=l)
return this->rch->Query(l,r);
return this->lch->Query(l,r)+this->rch->Query(l,r);
}
} void Node::Maintain(){
this->sum=this->lch->sum+this->rch->sum;
} void Node::PushDown(){
if(this->add){
this->lch->Add(this->add);
this->rch->Add(this->add);
this->add=0;
}
} inline void Node::Add(const intEx& d){
this->add+=d;
this->sum+=d*(r-l+1);
} inline void ReadInt(int& target){
target=0;
int sgn=1;
register char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')
sgn=-sgn;
ch=getchar();
}
while(isdigit(ch)){
target=target*10+ch-'0';
ch=getchar();
}
target*=sgn;
}

[2018HN省队集训D1T1] Tree的更多相关文章

  1. [2018HN省队集训D9T1] circle

    [2018HN省队集训D9T1] circle 题意 给定一个 \(n\) 个点的竞赛图并在其中钦定了 \(k\) 个点, 数据保证删去钦定的 \(k\) 个点后这个图没有环. 问在不删去钦定的这 \ ...

  2. [2018HN省队集训D8T1] 杀毒软件

    [2018HN省队集训D8T1] 杀毒软件 题意 给定一个 \(m\) 个01串的字典以及一个长度为 \(n\) 的 01? 序列. 对这个序列进行 \(q\) 次操作, 修改某个位置的字符情况以及查 ...

  3. [2018HN省队集训D8T3] 水果拼盘

    [2018HN省队集训D8T3] 水果拼盘 题意 给定 \(n\) 个集合, 每个集合包含 \([1,m]\) 中的一些整数, 在这些集合中随机选取 \(k\) 个集合, 求这 \(k\) 个集合的并 ...

  4. [2018HN省队集训D6T2] girls

    [2018HN省队集训D6T2] girls 题意 给定一张 \(n\) 个点 \(m\) 条边的无向图, 求选三个不同结点并使它们两两不邻接的所有方案的权值和 \(\bmod 2^{64}\) 的值 ...

  5. [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform

    [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform 题意 给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质 ...

  6. [2018HN省队集训D5T2] party

    [2018HN省队集训D5T2] party 题意 给定一棵 \(n\) 个点以 \(1\) 为根的有根树, 每个点有一个 \([1,m]\) 的权值. 有 \(q\) 个查询, 每次给定一个大小为 ...

  7. [2018HN省队集训D5T1] 沼泽地marshland

    [2018HN省队集训D5T1] 沼泽地marshland 题意 给定一张 \(n\times n\) 的棋盘, 对于位置 \((x,y)\), 若 \(x+y\) 为奇数则可能有一个正权值. 你可以 ...

  8. [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard

    [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard 题意 给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , ...

  9. [2018HN省队集训D1T3] Or

    [2018HN省队集训D1T3] Or 题意 给定 \(n\) 和 \(k\), 求长度为 \(n\) 的满足下列条件的数列的数量模 \(998244353\) 的值: 所有值在 \([1,2^k)\ ...

随机推荐

  1. Linux 文件流管理

    1. 打开/关闭文件 1). 打开文件 / fopen 作用: 打开一个文件,将其与文件流联系起来,方便后续的操作 头文件: #include <stdio.h> 函数原型: FILE * ...

  2. [转]VS2012正则查找

    本文转自:http://blog.csdn.net/u013688451/article/details/52840325 工作中有时需要用到 正则查找,例如 想找 所有用到 某个数据库表的地方 st ...

  3. MFC数据库操作

    本例采用Microsoft SQL2008建立的一个数据库表 /****链接数据库操作**/ 在stdafx.h的头文件中加入 #import "C:\Program Files\Commo ...

  4. oracle数据库逐步学习总结【基础二】

    原创作品,转载请在文字开头明显位置注明出处:https://www.cnblogs.com/sunshine5683/p/10067872.html 接着上一篇,继续总结! 五.oracle表管理 首 ...

  5. easyUi datagrid鼠标经过提示单元格内容

    此文章是基于 EasyUI+Knockout实现经典表单的查看.编辑 一. jquery.cellTip.js /** * 扩展两个方法 */ using('datagrid', function() ...

  6. WCF使用net.tcp寄宿到IIS中

    一.IIS部分 1. 安装WAS,如下图所示: 2. 网站net.tcp协议绑定,如下图所示: 3. 网站启用net.tcp,如下图所示: 二.WCF代码部分 1. DesignCaseService ...

  7. iphone设置fiddler代理测试

    iPhone上配置fiddler为代理方法: 打开IPhone, 找到你的网络连接,打开HTTP代理,输入Fiddler所在机器的IP地址(比如:192.168.1.104) 以及Fiddler的端口 ...

  8. 2017年5月22日 HTML基础知识(一)

    一.Html 结构 1.1.HTML基本文档格式—<html> 标记 —<html>文档的头部好和主体内容 </html>  根标记 —<head> 文 ...

  9. 【node】fs模块,文件和目录的操作

    检查文件是否存在,查询文件信息 fs.stat() fs.stat('./server.js', function (err, stat) { if (stat && stat.isF ...

  10. syscall to rop

    前言 hitcon 2017 的 start 题,比较简单,练练手. 题目链接: https://gitee.com/hac425/blog_data/tree/master/hitcon2017 正 ...