loj2541【PKUWC2018】猎人杀



题解
- 题目中的选择条件等价于正常选择所有猎人,而如果选到已经出局的猎人就继续选;
- 这两种选法是一样的因为(设$W=\sum_{i=1}^{n}w_{i}$ , $X$为已经出局的猎人的$w$之和):
- $P_{i} = \sum_{i=0}^{ \infty } {(\frac{X}{W})}^i \frac{w_{i}}{W}$
- $= \frac{w_{i}}{W} \sum_{i=0}^{ \infty } {(\frac{X}{W})}^i$
- $ = \frac{w_{i}}{W} \frac{1}{1-\frac{X}{W}}$
- $ = \frac{w_{i}}{W-X} $
- 考虑枚举强制$S$集合$(1 \notin S)$中的人在1之后出局,设$X(S) = \sum_{i=2}^{n} [i \in S]w_{i}$;
- $ans = \sum_{S} {(-1)}^{|S|} \sum_{i=0}^{ \infty } (1-\frac{w_{1}+X(S)}{W})^i \frac{w_{1}}{W} $
- $ans = \sum_{S} {(-1)}^{|S|} \frac{w_{1}}{w_{1}+X(S)} $
- 考虑求这个式子:
- $ans = \sum_{i=0}^{W} \frac{w_{1}}{w_{1}+i} \sum_{S} [X(S)==i] (-1)^{|S|}$
- 用生成函数$\Pi_{i=2}^{n} (1-x^{w_{i}})$处理处后面的部分即可;
- 时间复杂度:$O(Wlog^2 \ W)$
#include<bits/stdc++.h>
#define mod 998244353
using namespace std;
const int N=,M=;
int n,m,w[N],f[M][N],mx[M],L,len,sz,Wn[M][N],rev[N];
char gc(){
static char*p1,*p2,s[];
if(p1==p2)p2=(p1=s)+fread(s,,,stdin);
return(p1==p2)?EOF:*p1++;
}
int rd(){
int x=;char c=gc();
while(c<''||c>'')c=gc();
while(c>=''&&c<='')x=(x<<)+(x<<)+c-'',c=gc();
return x;
}
int pw(int x,int y){
int re=;
for(;y;y>>=,x=1ll*x*x%mod)if(y&)re=1ll*re*x%mod;
return re;
}
void ntt(int*a,int f){
for(int i=;i<len;++i)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=;i<len;i<<=){
int wn=Wn[!~f][i<<];
for(int j=;j<len;j+=i<<){
int w=;
for(int k=;k<i;++k,w=1ll*wn*w%mod){
int x=a[j+k],y=1ll*w*a[j+k+i]%mod;
a[j+k]=(x+y)%mod,a[j+k+i]=(x-y+mod)%mod;
}
}
}
if(!~f){
int iv=pw(len,mod-);
for(int i=;i<len;++i)a[i]=1ll*a[i]*iv%mod;
}
}
void solve(int l,int r){
if(l==r){
mx[++sz]=w[l];
f[sz][]=;f[sz][w[l]]=mod-;
for(int i=;i<w[l];++i)f[sz][i]=;
return ;
}
int mid=(l+r)>>;
solve(l,mid),solve(mid+,r);
int a=sz-,b=sz;
m=mx[a]+mx[b];
for(L=,len=;len<=m;len<<=,L++);
for(int i=;i<len;++i)rev[i]=(rev[i>>]>>)|((i&)<<(L-));
for(int i=mx[a]+;i<len;++i)f[a][i]=;
for(int i=mx[b]+;i<len;++i)f[b][i]=;
ntt(f[a],);ntt(f[b],);
for(int i=;i<len;++i)f[a][i]=1ll*f[a][i]*f[b][i]%mod;
ntt(f[a],-);
mx[--sz]=m;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("loj2541.in","r",stdin);
freopen("loj2541.out","w",stdout);
#endif
n=rd();
for(int i=;i<=n;++i)w[i]=rd();
for(int i=<<;i;i>>=){
Wn[][i]=pw(,(mod-)/i);
Wn[][i]=pw(Wn[][i],mod-);
}
solve(,n);
int ans=;
for(int i=;i<=mx[];++i){
ans=(ans + 1ll*f[][i]*w[]%mod*pw(i+w[],mod-)%mod)%mod;
}
cout<<(ans+mod)%mod<<endl;
return ;
}
loj2541【PKUWC2018】猎人杀的更多相关文章
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
- LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治
传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应 ...
- [LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)
https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #inc ...
- [LOJ2541] [PKUWC2018] 猎人杀
题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人 ...
- [PKUWC2018]猎人杀
题解 感觉是一道神题,想不出来 问最后\(1\)号猎人存活的概率 发现根本没法记录状态 每次转移的分母也都不一样 可以考虑这样一件事情: 如果一个人被打中了 那么不急于从所有人中将ta删除,而是给ta ...
- 题解-PKUWC2018 猎人杀
Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \( ...
- 洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)
题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们 ...
- 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)
点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...
- 【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)
[LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标 ...
- 「PKUWC2018」猎人杀
「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...
随机推荐
- Playfair加密
前面讲的不管是单码加密还是多码加密都属于单图加密,什么是单图加密和多图加密呢,简单来说单图加密就是一个字母加密一个字母,而多图加密就是一个字符组加密一个字符组.比如双图加密就是两个字母加密两个字母,这 ...
- [mysql] 归档工具pt-archiver,binlog格式由mixed变成row
pt-archiver官方地址:https://www.percona.com/doc/percona-toolkit/3.0/pt-archiver.html 介绍:归档数据,比如将一年前的数据备份 ...
- centos7安装oracle的一些问题
在配置监听的时候尝试了很多次都是不能创建,最后将 /data/oracle/product/11.2.0/db_1/network/admin目录下的listener.ora和tnsname.ora两 ...
- Wpf+数据库代码封装+策略模式封装
运行界面: 数据库保存的题: 数据库封装代码: using System; using System.Collections.Generic; using System.Linq; using Sys ...
- Teamwork(The sixth day of the team)
每日列会过后,我们的工作进度都有所进展了,好开心,但是还不是我们想要的,我们想做得更快,更好.
- STM32F103 CAN中断发送功能的再次讨论
转自:http://yiyutingmeng.blog.163.com/blog/static/124258578201191584629146/ 我在之前的一篇博客日志中,写过关于CAN发送功能如何 ...
- PROFIBUS-DP
PROFIBUS – DP的DP即Decentralized Periphery.它具有高速低成本,用于设备级控制系统与分散式I/O的通信.它与PROFIBUS-PA(Process Automati ...
- 0506-Scrum 项目 2.0视频
一.团队项目要求 应用NABCD模型,分析你们初步选定的项目,充分说明你们选题的理由. 录制为演说视频,上传到视频网站,并把链接发到团队博客上. 二.NABCD模型 选题:约拍平台——家教平台 1) ...
- 关于VS2005中C#代码用F12转到定义时,总是显示从元数据的问题
元数据是:NET 程序集中的标记信息. 是在代码中选择了转到定义时候给定位的吧.因为没有找到源代码,VS通过反射读取元数据中的信息生成了那个. 解决方法: 1. 要把项目先添加到解决方案中. 2. 再 ...
- mysql DDL、DML、DCL、DQL区分
mysql [Structure Query Language] 的组成分4个部分: DDL [Data Mefinition Language] 数据定义语言 DML [Data ...