Description

给定 \(n\) 个点的带边权树,求一条异或和最大的简单路径

Input

第一行是点数 \(n\)

下面 \(n - 1\) 行每行三个整数描述这棵树

Output

输出一个数代表答案

Hint

\(1~\leq~n~\leq~10^5~,~1~\leq~w~<~2^{31}\),其中 \(w\) 是最大边权

Solution

考虑由于自身异或自身对答案无贡献,对于两个点 \(u,v\),他们简单路径上的异或和即为他们分别向根节点求异或和的两个值的疑惑值。

然后考虑枚举每个点,设它向根求异或和的值为 \(c\),寻找另一个能够最大化异或值的点。显然要从高到低考虑。高位不够优秀的可以直接扔掉,我们考虑到底 \(i\) 位时,所有没有被扔掉的点中,如果 \(c\) 的第 \(i\) 位为 \(1\),则为了让答案更大,我们尽可能的选择第 \(i\) 位为 \(0\) 的点,反过来同理。

于是问题变成了动态判断是否存在符合要求的异或和。我们建立一棵 \(01\) trie来维护所有的异或和,然后在树上反着走即可。

时空复杂度 \(O(n~\log w)\)。不过略微有点小卡空间

Code

#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define ci const int
#define cl const long long typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
} template <typename T>
inline void ReadDb(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
int top=0;
do {OPT::buf[++top] = char(x % 10 + '0');} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
} const int maxn = 100010;
const int maxm = 200010;
const int maxt = 6200010; struct Edge {
Edge *nxt;
int to, v;
};
Edge eg[maxm], *hd[maxn]; int ecnt;
inline void cont(ci from, ci to, ci v) {
Edge &e = eg[++ecnt];
e.to = to; e.nxt = hd[from]; e.v = v; hd[from] = &e;
} struct Tree {
Tree *son[2];
};
Tree qwq[maxt], *rot;
int top; int n, ans;
int dist[maxn]; void reading();
void dfs(ci, ci);
void buildroot();
void build(Tree*, ci, ci);
int check(Tree*, ci, ci); int main() {
freopen("1.in", "r", stdin);
qr(n);
reading();
dfs(1, 0);
buildroot();
for (int i = 1; i <= n; ++i) build(rot, dist[i], 31);
for (int i = 1; i <= n; ++i) ans = std::max(ans, check(rot, dist[i], 31) ^ dist[i]);
qw(ans, '\n', true);
return 0;
} void reading() {
int a, b, c;
for (int i = 1; i < n; ++i) {
a = b = c = 0; qr(a); qr(b); qr(c);
cont(a, b, c); cont(b, a, c);
}
} void dfs(ci u, ci fa) {
for (Edge *e = hd[u]; e; e = e->nxt) {
int &to = e->to;
if (to == fa) continue;
dist[to] = dist[u] ^ e->v; dfs(to, u);
}
} void buildroot() {
rot = qwq; top = 1;
} void build(Tree *u, ci v, ci cur) {
if (cur < 0) return;
int k = static_cast<bool>((1 << cur) & v);
build(u->son[k] ? u->son[k] : u->son[k] = qwq + (top++), v, cur - 1);
} int check(Tree *u, ci v, ci cur) {
if (cur < 0) return 0;
int k = (static_cast<bool>((1 << cur) & v)) ^ 1;
return u->son[k] ? (check(u->son[k], v, cur - 1) | (k << cur)) : check(u->son[k ^ 1], v, cur - 1) | ((k ^ 1) << cur);
}

Summary

对于异或和一类的题目,考虑自身异或两遍对答案无贡献的情况。

动态判断一个串是否存在可以使用踹树来维护。

【trie树】【P4551】 最长异或路径的更多相关文章

  1. [luogu] P4551 最长异或路径(贪心)

    P4551 最长异或路径 题目描述 给定一棵\(n\)个点的带权树,结点下标从\(1\)开始到\(N\).寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或 ...

  2. P4551 最长异或路径 (01字典树,异或前缀和)

    题目描述 给定一棵 n 个点的带权树,结点下标从 1 开始到 N .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式: 第一行一 ...

  3. P4551 最长异或路径

    题目描述 给定一棵 nnn 个点的带权树,结点下标从 111 开始到 NNN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式 ...

  4. 洛谷 P4551 最长异或路径

    题目描述 给定一棵 nn 个点的带权树,结点下标从 11 开始到 NN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有节点权值的异或. 输入输出格式 输入格式: ...

  5. 洛谷P4551 最长异或路径

    传送门:https://www.luogu.org/problem/show?pid=4551 在看这道题之前,我们应懂这道题怎么做:给定n个数和一个数m,求m和哪一个数的异或值最大. 一种很不错的做 ...

  6. Luogu P4551 最长异或路径

    题目链接 \(Click\) \(Here\) \(01Trie\)好题裸题. 取节点\(1\)为根节点,向下扫每一个点从根节点到它路径上的异或和,我们可以得到一个\(sumx[u]\). 现在路径异 ...

  7. 2018.10.26 洛谷P4551 最长异或路径(01trie)

    传送门 直接把每个点到根节点的异或距离插入01trie. 然后枚举每个点在01trie上匹配来更新答案就行了. 代码: #include<iostream> #include<cst ...

  8. Luogu P4551 最长异或路径 01trie

    做一个树上前缀异或和,然后把前缀和插到$01trie$里,然后再对每一个前缀异或和整个查一遍,在树上从高位向低位贪心,按位优先选择不同的,就能贪出最大的答案. #include<cstdio&g ...

  9. luoguP4551最长异或路径

    P4551最长异或路径 链接 luogu 思路 从\(1\)开始\(dfs\)求出\(xor\)路径.然后根据性质\(x\)到\(y\)的\(xor\)路径就是\(xo[x]^xo[y]\) 代码 # ...

  10. 【ybt高效进阶2-4-3】【luogu P4551】最长异或路径

    最长异或路径 题目链接:ybt高效进阶2-4-3 / luogu P4551 题目大意 给定一棵 n 个点的带权树,结点下标从 1 开始到 N.寻找树中找两个结点,求最长的异或路径. 异或路径指的是指 ...

随机推荐

  1. Hands on Machine Learning with Sklearn and TensorFlow学习笔记——机器学习概览

    一.什么是机器学习? 计算机程序利用经验E(训练数据)学习任务T(要做什么,即目标),性能是P(性能指标),如果针对任务T的性能P随着经验E不断增长,成为机器学习.[这是汤姆米切尔在1997年定义] ...

  2. AlexNet——ImageNet Classification with Deep Convolutional Neural Networks

    1. 摘要 本文的模型采用了 5 层的卷积,一些层后面还紧跟着最大池化层,和 3 层的全连接,最后是一个 1000 维的 softmax 来进行分类. 为了减少过拟合,在全连接层采取了 dropout ...

  3. 关于go语言中的WaitGroup

    如果你刚接触Go语言并且想用它构建高并发,高性能的应用,弄明白WaitGroups是怎么回事很重要. 在本教程中,我们将掌握以下内容: WaitGroups的用途 一个WaitGroups的简单示例 ...

  4. iOS开发学习-cocoapods的配置安装

    安装coacoapods步骤: 在终端输入如下命令,升级ruby版本: sudo gem update —system 出现这个,标志着安装成功. 完成之后,再输入如下命令: gem sources ...

  5. Java操作百度身份证API

    网址:http://apistore.baidu.com/ 点击功能进行复制代码,就拿百度的身份证API 举例子: http://apistore.baidu.com/apiworks/service ...

  6. C#编程概述

    一个简单的c#程序 标识符 标识符是一种字符串,用来命名变量.方法.参数和许多后面将要阐述的其他程序结构. 关键字 所有C#关键字都由小写字母组成,但是.NET类型名使用Pascal大小写约定. Ma ...

  7. spring冲刺阶段之团队工作总结

    一.小组成员: 王俊凯(项目经理) 罗林杰(产品负责人) 王逸辉(Master) 罗凯杰 二.任务分配情况 王俊凯:生成题目的代码编写并提出编写意见 罗林杰:负责把按钮和界面内容连接到代码上及主要代码 ...

  8. app token session rsp

    引用:https://blog.csdn.net/jack85986370/article/details/51362278 一.登录机制 粗略地分析, 登录机制主要分为登录验证.登录保持.登出三个部 ...

  9. SQLSERVER 使用XP开头的系统默认存储过程

    1. 根据官网上面的内容进行执行命令 EXEC xp_cmdshell 'dir *.exe'; 但是会报错 消息 ,级别 ,状态 ,过程 xp_cmdshell,行 [批起始行 ] SQL Serv ...

  10. 微信小程序 功能函数 将对象的键添加到数组 (函数深入)

    // 将对象的键添加到数组 var arr = Object.keys(site); //英文 https://developer.mozilla.org/en-US/docs/Web/JavaScr ...