【bzoj5084】hashit 广义后缀自动机+树链的并+STL-set
题目描述
输入
输出
样例输入
aba-caba
样例输出
1
3
5
3
6
9
12
17
题解
广义后缀自动机+树链的并+STL-set
题目给出的字符串是一棵Trie的形式,我们对其建出广义后缀自动机。
那么每次我们要求的就是:Trie树上当前所有点在后缀自动机pre树到根节点的路径所覆盖的所有点的 $dis[pre[i]]-dis[i]$ 之和,即树链的并的长度。
我们使用STL-set维护动态插入删除节点的树链的并即可。
时间复杂度 $O(26n+n\log n)$ 。
第一次写正常的广义SAM = =
#include <set>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 200010
using namespace std;
set<int> s;
set<int>::iterator it;
char str[N];
int tc[N][26] , tf[N] , tt = 1 , pos[N] , c[N][26] , pre[N] , dis[N] , tot = 1 , head[N] , to[N] , next[N] , cnt , fa[N][20] , deep[N] , log[N] , vp[N] , rp[N] , tp;
inline int insert(int x , int p)
{
if(c[p][x])
{
int q = c[p][x];
if(dis[q] == dis[p] + 1) return q;
else
{
int nq = ++tot;
memcpy(c[nq] , c[q] , sizeof(c[q]));
dis[nq] = dis[p] + 1 , pre[nq] = pre[q] , pre[q] = nq;
while(p && c[p][x] == q) c[p][x] = nq , p = pre[p];
return nq;
}
}
else
{
int np = ++tot;
dis[np] = dis[p] + 1;
while(p && !c[p][x]) c[p][x] = np , p = pre[p];
if(!p) pre[np] = 1;
else
{
int q = c[p][x];
if(dis[q] == dis[p] + 1) pre[np] = q;
else
{
int nq = ++tot;
memcpy(c[nq] , c[q] , sizeof(c[q]));
dis[nq] = dis[p] + 1 , pre[nq] = pre[q] , pre[np] = pre[q] = nq;
while(p && c[p][x] == q) c[p][x] = nq , p = pre[p];
}
}
return np;
}
}
void build(int x)
{
int i;
for(i = 0 ; i < 26 ; i ++ )
if(tc[x][i])
pos[tc[x][i]] = insert(i , pos[x]) , build(tc[x][i]);
}
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
vp[x] = ++tp , rp[tp] = x;
for(i = 1 ; i <= log[deep[x]] ; i ++ ) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i]) fa[to[i]][0] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
inline int lca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if(deep[x] - deep[y] >= (1 << i))
x = fa[x][i];
if(x == y) return x;
for(i = log[deep[x]] ; ~i ; i -- )
if(deep[x] >= (1 << i) && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return fa[x][0];
}
int main()
{
int q , i , now = 1 , x , y;
long long ans = 0;
scanf("%s" , str) , q = strlen(str);
for(i = 0 ; i < q ; i ++ )
{
if(str[i] == '-') now = tf[now];
else
{
if(!tc[now][str[i] - 'a']) tc[now][str[i] - 'a'] = ++tt , tf[tt] = now;
now = tc[now][str[i] - 'a'];
}
}
pos[1] = 1 , build(1);
for(i = 2 ; i <= tot ; i ++ ) add(pre[i] , i) , log[i] = log[i >> 1] + 1;
dfs(1);
now = 1;
for(i = 0 ; i < q ; i ++ )
{
if(str[i] == '-')
{
ans -= dis[pos[now]] , s.erase(vp[pos[now]]);
x = y = 0 , it = s.upper_bound(vp[pos[now]]);
if(it != s.end()) x = rp[*it];
if(it != s.begin()) y = rp[*--it];
if(x) ans += dis[lca(pos[now] , x)];
if(y) ans += dis[lca(pos[now] , y)];
if(x && y) ans -= dis[lca(x , y)];
now = tf[now];
}
else
{
now = tc[now][str[i] - 'a'] , ans += dis[pos[now]];
x = y = 0 , it = s.upper_bound(vp[pos[now]]);
if(it != s.end()) x = rp[*it];
if(it != s.begin()) y = rp[*--it];
if(x) ans -= dis[lca(pos[now] , x)];
if(y) ans -= dis[lca(pos[now] , y)];
if(x && y) ans += dis[lca(x , y)];
s.insert(vp[pos[now]]);
}
printf("%lld\n" , ans);
}
return 0;
}
【bzoj5084】hashit 广义后缀自动机+树链的并+STL-set的更多相关文章
- CF G. Indie Album 广义后缀自动机+树链剖分+线段树合并
这里给出一个后缀自动机的做法. 假设每次询问 $t$ 在所有 $s$ 中的出现次数,那么这是非常简单的: 直接对 $s$ 构建后缀自动机,随便维护一下 $endpos$ 大小就可以. 然而,想求 $t ...
- CF504E Misha and LCP on Tree 后缀自动机+树链剖分+倍增
求树上两条路径的 LCP (树上每个节点代表一个字符) 总共写+调了6个多小时,终于过了~ 绝对是我写过的最复杂的数据结构了 我们对这棵树进行轻重链剖分,然后把所有的重链分正串,反串插入到广义后缀自动 ...
- [LuoguU41039]PION后缀自动机 树链剖分+动态开点线段树
链接 刚开始看出题人题解都吓蒙掉了,还以为是什么难题,结果就一板子题 思路:对每一个文件名开一棵线段树,然后树剖即可 #include<bits/stdc++.h> #define REP ...
- 【CF666E】Forensic Examination 广义后缀自动机+倍增+线段树合并
[CF666E]Forensic Examination 题意:给你一个字符串s和一个字符串集合$\{t_i\}$.有q个询问,每次给出$l,r,p_l,p_r$,问$s[p_l,p_r]$在$t_l ...
- cf666E. Forensic Examination(广义后缀自动机 线段树合并)
题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...
- CF 666E Forensic Examination——广义后缀自动机+线段树合并
题目:http://codeforces.com/contest/666/problem/E 对模式串建广义后缀自动机,询问的时候把询问子串对应到广义后缀自动机的节点上,就处理了“区间”询问. 还要处 ...
- 【codeforces666E】Forensic Examination 广义后缀自动机+树上倍增+线段树合并
题目描述 给出 $S$ 串和 $m$ 个 $T_i$ 串,$q$ 次询问,每次询问给出 $l$ .$r$ .$x$ .$y$ ,求 $S_{x...y}$ 在 $T_l,T_{l+1},...,T_r ...
- CF666E Forensic Examination 广义后缀自动机_线段树合并_树上倍增
题意: 给定一个串 $S$ 和若干个串 $T_{i}$每次询问 $S[pl..pr]$ 在 $Tl..Tr$ 中出现的最多次数,以及出现次数最多的那个串的编号. 数据范围: 需要离线 题解:首先,很常 ...
- UVA - 11107 Life Forms (广义后缀自动机+后缀树/后缀数组+尺取)
题意:给你n个字符串,求出在超过一半的字符串中出现的所有子串中最长的子串,按字典序输出. 这道题算是我的一个黑历史了吧,以前我的做法是对这n个字符串建广义后缀自动机,然后在自动机上dfs,交上去AC了 ...
随机推荐
- post提交方式
post提交方式 为提交 url 路径后的name值 getParameter 是获取url后面的参数的.getattribute 是获取 自己setattribute的.
- [Unity] unity5.3 assetbundle打包及加载
Unity5.3更新了assetbundle的打包和加载api,下面简单介绍使用方法及示例代码. 在Unity中选中一个prefab查看Inspector窗口,有两个位置可以进行assetbundle ...
- CentOS7上部署ASP.Net Core 2.2应用
前言 在CentOS7上部署ASP.Net Core应用是我的技术路线验证的一部分,下一个产品计划采用ASP.Net Boilerplate Framework开发.因此需要求提前进行一下技术验证,在 ...
- NO--14 微信小程序,左右联动二
上一篇讲解了左=>右联动,那个还比较简单,本篇写剩下比较核心的部分,也是本次开发过程中遇到最难的部分,右=>左联动,先简单看一下演示 右左联动.gif 一.关键技术: (1) 小程序 ...
- Java字符串与日期互转
Java字符串与日期的相互转换 1.字符串转日期 字符串的格式与日期的格式一定要对应,并且字符串格式可以比日期格式多,但不能少,数字大小不自动计算日期.其中需要主要大小写 年yyyy 月MM 日dd ...
- ats编译中增加透明度 选项
在大多数情况下,如果环境支持透明度,则configure将自动启用它.对于其他环境,可能需要 配置configure 选项. --enable-posix-cap 这实现了POSIX功能,这是透明度所 ...
- https、ssl、tls协议学习
一.知识准备 1.ssl协议:通过认证.数字签名确保完整性:使用加密确保私密性:确保客户端和服务器之间的通讯安全 2.tls协议:在SSL的基础上新增了诸多的功能,它们之间协议工作方式一样 3.htt ...
- 【Ansible】ansible循环
Ansible 循环 一.简单介绍 在ansible2.5之前,大多数人使”with_XXX”类型的关键字来操作循环,但是从2.6版本开始,官方推荐是”loop”关键字代替” with_XXX”. 1 ...
- AssertionError
(1)p1 = multiprocessing.Process(test1)p2 = multiprocessing.Process(target=test2) 错误: p1缺少target,应为(t ...
- 深度学习中数据的augmentation
为了提高模型的泛化能力,同时也为了增大数据集,我们往往需要对数据进行augmentation,在这篇博客中,将总结一下可以对数据进行的augmentation. 1.颜色数据增强,对图像亮度.饱和度. ...