传送门

要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数。

于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数。

而我们知道,lcm只跟所有素数的最高位有关。

因此lcm=∏iprimeipi" role="presentation" style="position: relative;">∏iprimeipi∏iprimeipi 。

于是我们可以定义状态f[i][j]表示前i个素数凑出的和为j的方案数。

这个可以用类似于背包的算法处理。

于是就愉快的做完了。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 1005
using namespace std;
int n,pri[N],tot=0;
bool vis[N];
ll f[N][N],ans=0;
inline void init(int len){
    for(int i=2;i<=len;++i){
        if(!vis[i])pri[++tot]=i;
        for(int j=1;j<=tot;++j){
            int k=pri[j]*i;
            if(k>len)break;
            vis[k]=true;
            if(i%pri[j]==0)break;
        }
    }
}
int main(){
    cin>>n,init(n);
    f[0][0]=1;
    for(int i=1;i<=tot;++i){
        for(int j=0;j<=n;++j)f[i][j]=f[i-1][j];
        for(int j=pri[i];j<=n;j*=pri[i])for(int k=0;k<=n-j;++k)f[i][j+k]+=f[i-1][k];
    }
    for(int i=0;i<=n;++i)ans+=f[tot][i];
    cout<<ans;
    return 0;
}

2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)的更多相关文章

  1. 2018.09.02 bzoj1296: [SCOI2009]粉刷匠(dp套dp)

    传送门 dp好题. 先推出对于每一行花费k次能最多粉刷的格子数. 然后再推前i行花费k次能最多粉刷的格子数. 代码: #include<bits/stdc++.h> #define N 5 ...

  2. bzoj1025 [SCOI2009]游戏——因数DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4 ...

  3. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  4. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  5. 2018.09.02 bzoj1003: [ZJOI2006]物流运输(dp+最短路转移)

    传送门 dp好题. 每一天要变更路线一定还是走最短路. 所以l~r天不变更路线的最优方案就是把l~r天所有不能走的点都删掉再求最短路.显然是可以dp的. 设f[i]表示第i天的最优花销.那么我们枚举在 ...

  6. BZOJ1025 [SCOI2009]游戏 【置换群 + 背包dp】

    题目链接 BZOJ1025 题解 题意就是问一个\(1....n\)的排列在同一个置换不断重复下回到\(1...n\)可能需要的次数的个数 和置换群也没太大关系 我们只需知道同一个置换不断重复,实际上 ...

  7. [BZOJ1025][SCOI2009]游戏 DP+置换群

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目中的排数就是多少次回到原来的序列.很显然对于题目所描述的任意一种对应法则,其中一 ...

  8. bzoj1025: [SCOI2009]游戏(DP)

    题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数. 看见这种一脸懵逼的题第一要务当然是简化题意...我们可以发现 ...

  9. [BZOJ1025] [SCOI2009]游戏 解题报告

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

随机推荐

  1. linux 下常用部分命令

    关机 (系统的关机.重启以及登出 ) shutdown -h now 关闭系统() init 关闭系统() shutdown -h hours:minutes & 按预定时间关闭系统 shut ...

  2. Unable to open file '.RES'

    Unable to open file '.RES' 另存工程,带来的隐患,工程图标也改不了. 搜索发现源码里某个man.cpp里带了prgram  resource aaa.res,换成新工程文件名 ...

  3. c#之using关键字

    1.using可以引入命名空间: 2.在using语句里声明的变量,使用完后会自动调用Dispose方法(实现IDisposable接口). using 语句允许程序员指定使用资源的对象应当何时释放资 ...

  4. vue深入了解组件——动态组件&异步组件

    一.在动态组件上使用 keep-alive 我们之前曾经在一个多标签的界面中使用 is 特性来切换不同的组件: <component v-bind:is="currentTabComp ...

  5. Redis用在哪里

    1. 高并发缓存/共享session:     UserInfo getUserInfo (long id) {}     取:     userRedisKey = "user:info: ...

  6. 学习笔记-db

    异步,最终一致性,幂等操作 关系型数据库隔离了数据的存储路径,让用户只关心查询的逻辑,为了实现事物和强一致性通过各种锁牺牲了性能 互联网在线处理需求排列 数据的扩展性 > 请求的响应时间 > ...

  7. python 文件移动

    python实现文件移动: import shutil shutil.move("original_path", "new_folder") # move fi ...

  8. drop user和drop user cascade的区别

    SQL> delete user itp2;delete user itp2       *第 1 行出现错误:ORA-00903: 表名无效 SQL> drop user itp2;dr ...

  9. python json5

    install pip install json5 test a.json: { 'a':'b', 'aa':['b1','b2']} =========================== impo ...

  10. -moz 火狐 -msIE -webkit[chrome safari]

    -moz代表firefox浏览器私有属性 -ms代表IE浏览器私有属性 -webkit代表chrome.safari私有属性