参考资料:openclassroom

线性回归(Linear Regression)

为了拟合10岁以下儿童年龄(x1)与身高(y)之间的关系,我们假设一个关于x的函数h(x):

h(x) = Θ01*x1 = Θ0*x01*x1 = ΘT*x (其中x0=1, x=[x0, x1])

我们的目的是求出Θ,使得h(x)接近真实的y。

因此我们需要在m个训练样本(x,y)上使得h(x)与y的平方误差最小。

也就是最小化J(Θ) =1/(2*m) * ∑i(h(x(i))-y(i))2

分母上2的作用是抵消求导时平方项产生的2.

解法一:Gradient Descent(梯度下降)

Θ朝着J(Θ)的梯度方向(即J(Θ)关于Θ的偏导)前进,直到J(Θ)达到极小点(线性回归中J(Θ)为碗状,极小点即最小点)

α为步长,由于J(Θ)关于Θ的偏导会逐渐变小,因此α无需调整。

同时执行以下两个更新公式,直到收敛。

注意:同时执行。而不是求出一个代入另一个的迭代执行。

Θ0 = Θ0-α/m*∑i(h(x(i))-y(i))x0(i)

Θ= Θ1-α/m*∑i(h(x(i))-y(i))x1(i)

解法二:Normal Equations

J(Θ)关于Θ求导为0,联列方程组求解得:

Θ = (XTX)-1XTY (其中X的行向量为x(i),Y每个元素为y(i))

注意:(XTX)-1不一定有意义

case 1: 每个x(i)样本的维度为n。当m <= n时,XTX 非满秩,为奇异矩阵,无逆元。

case 2: x(i)特征线性相关,即X列向量线性相关时,XTX 非满秩,为奇异矩阵,无逆元。

【ML】求解线性回归方程(Linear Regression)的更多相关文章

  1. # ML学习小笔记—Linear Regression

    Regression Output a scalar Model:a set of function 以Linear model为例 y = b+w * $x_cp$ parameters:b,W f ...

  2. 机器学习(ML)一之 Linear Regression

    一.线性回归 1.模型 2.损失函数 3.优化函数-梯度下降 #!/usr/bin/env python # coding: utf-8 import torch import time # init ...

  3. TensorFlow笔记二:线性回归预测(Linear Regression)

    代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...

  4. ML:多变量线性回归(Linear Regression with Multiple Variables)

    引入额外标记 xj(i) 第i个训练样本的第j个特征 x(i) 第i个训练样本对应的列向量(column vector) m 训练样本的数量 n 样本特征的数量 假设函数(hypothesis fun ...

  5. Andrew Ng机器学习 一: Linear Regression

    一:单变量线性回归(Linear regression with one variable) 背景:在某城市开办饭馆,我们有这样的数据集ex1data1.txt,第一列代表某个城市的人口,第二列代表在 ...

  6. 从损失函数优化角度:讨论“线性回归(linear regression)”与”线性分类(linear classification)“的联系与区别

    1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优 ...

  7. [ML] Bayesian Linear Regression

    热身预览 1.1.10. Bayesian Regression 1.1.10.1. Bayesian Ridge Regression 1.1.10.2. Automatic Relevance D ...

  8. 线性回归 Linear regression(1)线性回归的基本算法与求解

    本系列内容大部分来自Standford公开课machine learning中Andrew老师的讲解,附加自己的一些理解,编程实现和学习笔记. 第一章 Linear regression 1.线性回归 ...

  9. ML 线性回归Linear Regression

    线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Rep ...

随机推荐

  1. C++中List的用法

    Lists将元素按顺序储存在链表中. 与 向量(vectors)相比, 它允许快速的插入和删除,但是随机访问却比较慢. assign() 给list赋值 back() 返回最后一个元素 begin() ...

  2. java.net.URI 简介 文档 API

    URI 简介 文档地址:http://tool.oschina.net/apidocs/apidoc?api=jdk-zh public final class java.net.URI extend ...

  3. 【Word】Word 2010 设置边框底纹,粘贴漂亮的代码

    参考资料: http://jingyan.baidu.com/article/48206aea1a3401216bd6b310.html http://wenku.baidu.com/link?url ...

  4. [Backbone]8. Level 7: Router and history

    1. Ceate a route Class var AppRouter = Backbone.Router.extend({ }); 2. Add a route name it "sho ...

  5. 强大的json工具:fastJson

    fastJson   FastJSON是一个很好的java开源json工具类库,相比其他同类的json类库,它的速度的确是fast,最快!但是文档做得不好,在应用前不得不亲测一些功能.   实际上其他 ...

  6. spring @Service()中初始化方法

    @Service(value = "xxxServiceImpl" xxxxxxxx) public class XXXSerivceImpl { public void init ...

  7. 原创Oracle数据泵导出/导入(expdp/impdp)

    //创建目录 create Or Replace directory dpdata1 as 'd:\test\dump'; //赋予读写权限 grant read,write on directory ...

  8. Android中保存静态秘钥实践(转)

    本文我们将讲解一个Android产品研发中可能会碰到的一个问题:如何在App中保存静态秘钥以及保证其安全性.许多的移动app需要在app端保存一些静态字符串常量,其可能是静态秘钥.第三方appId等. ...

  9. android缓存具体解释

    Android缓存: 採用缓存,能够进一步大大缓解数据交互的压力.又能提供一定的离线浏览.下边我简略列举一下缓存管理的适用环境: 1. 提供网络服务的应用 2. 数据更新不须要实时更新,哪怕是3-5分 ...

  10. 6、javac命令详解

    javac [ options ] [ sourcefiles ] [ @files ] 参数可按任意次序排列. options 命令行选项. sourcefiles 一个或多个要编译的源文件(例如 ...