from numpy import array, append, vstack, transpose, reshape, \
dot, true_divide, mean, exp, sqrt, log, \
loadtxt, savetxt, zeros, frombuffer
from numpy.linalg import norm, lstsq
from multiprocessing import Process, Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File def metrics(a, b):
return norm(a - b) def gaussian (x, mu, sigma):
return exp(- metrics(mu, x)**2 / (2 * sigma**2)) def multiQuadric (x, mu, sigma):
return pow(metrics(mu,x)**2 + sigma**2, 0.5) def invMultiQuadric (x, mu, sigma):
return pow(metrics(mu,x)**2 + sigma**2, -0.5) def plateSpine (x,mu):
r = metrics(mu,x)
return (r**2) * log(r) class Rbf:
def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):
self.prefix = prefix
self.workers = workers
self.extra_neurons = extra_neurons # Import partial model
if from_files is not None:
w_handle = self.w_handle = File(from_files['w'], 'r')
mu_handle = self.mu_handle = File(from_files['mu'], 'r')
sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r') self.w = w_handle['w']
self.mu = mu_handle['mu']
self.sigmas = sigma_handle['sigmas'] self.neurons = self.sigmas.shape[0] def _calculate_error(self, y):
self.error = mean(abs(self.os - y))
self.relative_error = true_divide(self.error, mean(y)) def _generate_mu(self, x):
n = self.n
extra_neurons = self.extra_neurons # TODO: Make reusable
mu_clusters = loadtxt('clusters100.txt', delimiter='\t') mu_indices = sample(range(n), extra_neurons)
mu_new = x[mu_indices, :]
mu = vstack((mu_clusters, mu_new)) return mu def _calculate_sigmas(self):
neurons = self.neurons
mu = self.mu sigmas = zeros((neurons, ))
for i in xrange(neurons):
dists = [0 for _ in xrange(neurons)]
for j in xrange(neurons):
if i != j:
dists[j] = metrics(mu[i], mu[j])
sigmas[i] = mean(dists)* 2
# max(dists) / sqrt(neurons * 2))
return sigmas def _calculate_phi(self, x):
C = self.workers
neurons = self.neurons
mu = self.mu
sigmas = self.sigmas
phi = self.phi = None
n = self.n def heavy_lifting(c, phi):
s = jobs[c][1] - jobs[c][0]
for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
for j in xrange(neurons):
# phi[i, j] = metrics(x[i,:], mu[j])**3)
# phi[i, j] = plateSpine(x[i,:], mu[j]))
# phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
# phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
if k % 1000 == 0:
percent = true_divide(k, s)*100
print(c, ': {:2.2f}%'.format(percent))
print(c, ': Done') # distributing the work between 4 workers
shared_array = Array(c_double, n * neurons)
phi = frombuffer(shared_array.get_obj())
phi = phi.reshape((n, neurons)) jobs = []
workers = [] p = n / C
m = n % C
for c in range(C):
jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
worker = Process(target = heavy_lifting, args = (c, phi))
workers.append(worker)
worker.start() for worker in workers:
worker.join() return phi def _do_algebra(self, y):
phi = self.phi w = lstsq(phi, y)[0]
os = dot(w, transpose(phi))
return w, os
# Saving to HDF5
os_h5 = os_handle.create_dataset('os', data = os) def train(self, x, y):
self.n = x.shape[0] ## Initialize HDF5 caches
prefix = self.prefix
postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
name_template = prefix + '-{}-' + postfix
phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')
os_handle = self.w_handle = File(name_template.format('os'), 'w')
w_handle = self.w_handle = File(name_template.format('w'), 'w')
mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')
sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w') ## Mu generation
mu = self.mu = self._generate_mu(x)
self.neurons = mu.shape[0]
print('({} neurons)'.format(self.neurons))
# Save to HDF5
mu_h5 = mu_handle.create_dataset('mu', data = mu) ## Sigma calculation
print('Calculating Sigma...')
sigmas = self.sigmas = self._calculate_sigmas()
# Save to HDF5
sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)
print('Done') ## Phi calculation
print('Calculating Phi...')
phi = self.phi = self._calculate_phi(x)
print('Done')
# Saving to HDF5
print('Serializing...')
phi_h5 = phi_handle.create_dataset('phi', data = phi)
del phi
self.phi = phi_h5
print('Done') ## Algebra
print('Doing final algebra...')
w, os = self.w, _ = self._do_algebra(y)
# Saving to HDF5
w_h5 = w_handle.create_dataset('w', data = w)
os_h5 = os_handle.create_dataset('os', data = os) ## Calculate error
self._calculate_error(y)
print('Done') def predict(self, test_data):
mu = self.mu = self.mu.value
sigmas = self.sigmas = self.sigmas.value
w = self.w = self.w.value print('Calculating phi for test data...')
phi = self._calculate_phi(test_data)
os = dot(w, transpose(phi))
savetxt('iok3834.txt', os, delimiter='\n')
return os @property
def summary(self):
return '\n'.join( \
['-----------------',
'Training set size: {}'.format(self.n),
'Hidden layer size: {}'.format(self.neurons),
'-----------------',
'Absolute error : {:02.2f}'.format(self.error),
'Relative error : {:02.2f}%'.format(self.relative_error * 100)]) def predict(test_data):
mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value
sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value
w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value n = test_data.shape[0]
neur = mu.shape[0] mu = transpose(mu)
mu.reshape((n, neur)) phi = zeros((n, neur))
for i in range(n):
for j in range(neur):
phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j]) os = dot(w, transpose(phi))
savetxt('iok3834.txt', os, delimiter='\n')
return os

径向基(RBF)神经网络python实现的更多相关文章

  1. RBF(径向基)神经网络

    只要模型是一层一层的,并使用AD/BP算法,就能称作 BP神经网络.RBF 神经网络是其中一个特例.本文主要包括以下内容: 什么是径向基函数 RBF神经网络 RBF神经网络的学习问题 RBF神经网络与 ...

  2. RBF高斯径向基核函数【转】

    XVec表示X向量.||XVec||表示向量长度.r表示两点距离.r^2表示r的平方.k(XVec,YVec) = exp(-1/(2*sigma^2)*(r^2))= exp(-gamma*r^2) ...

  3. 机器学习之径向基神经网络(RBF NN)

    本文基于台大机器学习技法系列课程进行的笔记总结. 主要内容如下图所示: 首先介绍一下径向基函数网络的Hypothesis和网络的结构,然后介绍径向基神经网络学习算法,以及利用K-means进行的学习, ...

  4. RBF径向基神经网络——乳腺癌医学诊断建模

    案例描述 近年来疾病早期诊断越来越受到医学专家的重视,从而产生了各种疾病诊断的新方法.乳癌最早的表现是患乳出现单发的.无痛性并呈进行性生长的小肿块.肿块位于外上象限最多见,其次是乳头.乳晕区和内上象限 ...

  5. 径向基网络(RBF network)

    来源:http://blog.csdn.net/zouxy09/article/details/13297881 1.径向基函数 径向基函数(Radical Basis Function,RBF)方法 ...

  6. RBF神经网络

    RBF神经网络 RBF神经网络通常只有三层,即输入层.中间层和输出层.其中中间层主要计算输入x和样本矢量c(记忆样本)之间的欧式距离的Radial Basis Function (RBF)的值,输出层 ...

  7. RBF神经网络——直接看公式,本质上就是非线性变换后的线性变化(RBF神经网络的思想是将低维空间非线性不可分问题转换成高维空间线性可分问题)

    Deeplearning Algorithms tutorial 谷歌的人工智能位于全球前列,在图像识别.语音识别.无人驾驶等技术上都已经落地.而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶 ...

  8. RBF神经网络学习算法及与多层感知器的比较

    对于RBF神经网络的原理已经在我的博文<机器学习之径向基神经网络(RBF NN)>中介绍过,这里不再重复.今天要介绍的是常用的RBF神经网络学习算法及RBF神经网络与多层感知器网络的对比. ...

  9. RBF神经网络通用函数 newrb, newrbe

      RBF神经网络通用函数 newrb, newrbe 1.newrb 其中P为输入向量,T为输出向量,GOAL为均方误差的目标,SPREED为径向基的扩展速度.返回值是一个构建好的网络,用newrb ...

  10. RBF神经网络的matlab简单实现

    径向基神经网络 1.径向基函数 (Radial Basis Function,RBF) 神经网络是一种性能良好的前向网络,具有最佳逼近.训练简洁.学习收敛速度快以及克服局部最小值问题的性能,目前已经证 ...

随机推荐

  1. Oracle EBS AR 事务处理到期余额总计API

    declare    -- Local variables here   i integer;   x_line_original NUMBER;   x_line_remaining NUMBER; ...

  2. [域|Domain] The trust relationship between this workstation and the primary domain failed 此工作站和主域间的信任关系失败

    PS> $cred = Get-Credential domain.sample.com;Reset-ComputerMachinePassword -Credential $cred -Ser ...

  3. asp.net 一般处理程序实现网站验证码

    使用VerifyCode.ashx一般处理程序生成验证码,实现如下: using System; using System.Drawing; using System.Web; using Syste ...

  4. asp.net mvc多级目录结构和多级area实现技巧

    今天在工作要实现这个多级area.其原因是这个项目需要多级的功能,大的类别里有小的类别,小的类别里有具体的功能项,每一个功能项还有若干动作Action,所以在菜单和mvc工程的结构上都需要有体现多级的 ...

  5. Redis常用指令

    1.使用指令存储数据 不同数据类型的使用 1.String > 在以上指令中我们使用set指令向redis存进了一个数据类型为string,名为str1,值为123456.(如果你要问为什么,那 ...

  6. Python学习---django-debug-tools安装

    [官网]http://django-debug-toolbar.readthedocs.io/en/1.2/installation.html [更多安装参考]http://blog.csdn.net ...

  7. Gogs集成AD域LDAP

    操作步骤: 添加认证源 使用管理员账号登录Gogs,进入控制面板→认证源管理→添加新的源 设置如图所示 使用ldap认证源登录 配置成功后,登录时可选择认真源,界面如图所示

  8. Hadoop HBase概念学习系列之HBase里的时间戳(二十六)

    HBase集群要求每个节点的时间必须同步.HBase对于节点的时间扭曲(time skew)容忍度很低(这和HDFS是不一样的). 这主要是因为HBase需要使用系统时间来产生时间戳.如果系统时间不同 ...

  9. Virtual PC局域网共享速度慢的解决半法。转

    HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\DisableTaskOffload 新建字符串,名:DisableTaskOffloa ...

  10. MapReduce实例&YARN框架

    MapReduce实例&YARN框架 一个wordcount程序 统计一个相当大的数据文件中,每个单词出现的个数. 一.分析map和reduce的工作 map: 切分单词 遍历单词数据输出 r ...