最短路算法 -- SPFA模板
一、算法步骤
建立一个队列,初始时队列里只有起始点,再建立一个数组记录起始点到所有点的最短路径(该数组的初始值要赋为极大值,该点到它本身的路径赋为0,下面的模板中该数组为dist[])。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。
二、算法模板
struct Edge
{
int s, e, dist; //边的起点、终点、长度 Edge() {}
Edge(int s, int e, int d) :s(s), e(e), dist(d) {}
}; const int INF = 0x3f3f3f;
const int N = + ;
vector<Edge> v[N]; //使用邻接表存储图,v[i]存储与结点i邻接的结点
int dist[N]; //存储从起点到其余各点的最短路径
int visit[N]; //存储结点是否被访问过
int n; //n为图中结点个数 void spfa(int s) //求结点s到其余各点的最短路
{
queue<int> q;
memset(dist, INF, sizeof(dist));
memset(visit, , sizeof(visit));
q.push(s);
visit[s] = ;
dist[s] = ; while (!q.empty())
{
int s = q.front();
q.pop();
visit[s] = ;
for (int i = ; i < v[s].size(); i++)
{
int e = v[s][i].e;
if (dist[e] > dist[s] + v[s][i].dist)
{
dist[e] = dist[s] + v[s][i].dist;
if (visit[e] == )
{
visit[e] = ;
q.push(e);
}
}
}
}
printf("%d\n", dist[n]);
}
三、模板题
1、hdoj2544
最短路算法 -- SPFA模板的更多相关文章
- 最短路算法——SPFA
用途: 单源最短路径,不可以处理含负权边的图但可以用来判断是否存在负权回路: 复杂度O(kE) [k <= 2, E 为边数]: 算法核心: Bellman-Ford 算法的优化,实质与前算法一 ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
- 最短路算法--SPFA+嵌套map
hdu 2066 #include<iostream> #include<cstdio> #include<cstring> #include<queue ...
- 各类最短路算法基本模板-C++
原文转自:https://blog.csdn.net/changjiale110/article/details/77394650 感谢. #define Max 0x3f3f3f3f #define ...
- 最短路算法(floyed+Dijkstra+bellman-ford+SPFA)
最短路算法简单模板 一.floyed算法 首先对于floyed算法来说就是最短路径的动态规划解法,时间复杂度为O(n^3) 适用于图中所有点与点之间的最短路径的算法,一般适用于点n较小的情况. Flo ...
- 模板C++ 03图论算法 1最短路之单源最短路(SPFA)
3.1最短路之单源最短路(SPFA) 松弛:常听人说松弛,一直不懂,后来明白其实就是更新某点到源点最短距离. 邻接表:表示与一个点联通的所有路. 如果从一个点沿着某条路径出发,又回到了自己,而且所经过 ...
- 【最短路算法】Dijkstra+heap和SPFA的区别
单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...
- 最短路算法详解(Dijkstra/SPFA/Floyd)
新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...
- 算法专题 | 10行代码实现的最短路算法——Bellman-ford与SPFA
今天是算法数据结构专题的第33篇文章,我们一起来聊聊最短路问题. 最短路问题也属于图论算法之一,解决的是在一张有向图当中点与点之间的最短距离问题.最短路算法有很多,比较常用的有bellman-ford ...
随机推荐
- PHP文件引入
综述和基本语法 有4个文件加载语句:include,require,include_once,require_once. require函数通常放在 PHP 程序的最前面,PHP 程序在执行前,就会先 ...
- servlet程序使用tomcat启动报错
根据书上的需求写了一些简单的servlet代码,启动时报错: 严重: A child container failed during startjava.util.concurrent.Executi ...
- bzoj千题计划142:bzoj3144: [Hnoi2013]切糕
http://www.lydsy.com/JudgeOnline/problem.php?id=3144 如果D=2 ,两个点,高度为4,建图如下 #include<queue> #inc ...
- [转载]RSA算法详解
原文:http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...
- 去除zabbix calculate 模式下,有时候分母为零的情况(Cannot evaluate expression: division by zero. )
zabbix的监控类型支持一种calculate的方式,可以对几个item结果进行简单的计算,但有时会出现分母为零的情况,这时候监控项就会报错 Cannot evaluate expression: ...
- Groovy/Spock 测试导论
Groovy/Spock 测试导论 原文 http://java.dzone.com/articles/intro-so-groovyspock-testing 翻译 hxfirefox 测试对于软件 ...
- Strusts2笔记5--数据验证
数据验证: 输入验证分为客户端验证与服务器端验证.客户端验证主要通过JavaScript脚本进行,而服务器端验证主要是通过Java代码进行验证. 分为以下四种情况: (1)手工编写代码,对Action ...
- go 函数举例练习
1. 求1到100之内的所有质数,并打印到屏幕上 package main import "fmt" // 求1-100 内的质数 func justfy(i int) bool ...
- Using KernelShark to analyze the real-time scheduler【转】
转自:https://lwn.net/Articles/425583/ This article brought to you by LWN subscribers Subscribers to LW ...
- 使用免安装压缩包安装MySQL
OS:Windows 10家庭中文版 MySQL:mysql-5.7.20-winx64.zip 作者:Ben.Z 参考链接: Installing MySQL on Microsoft Window ...