BZOJ 5395--[Ynoi2016]谁的梦(STL&容斥)
5395: [Ynoi2016]谁的梦
Time Limit: 80 Sec Memory Limit: 128 MB
Submit: 22 Solved: 7
[Submit][Status][Discuss]
Description
.png)
.png)
.png)
.png)
.png)
Input
Output
Sample Input
6 6
1 3 1 1 3 2
2 3 3 2 1 1
1 1 1
1 1 2
1 1 2
1 1 1
1 1 1
Sample Output
1158
1168
1168
1158
1158
题目链接:
http://www.lydsy.com/JudgeOnline/problem.php?id=5395
Solution
少女的等待故事。
爱慕哥哥的少女,她坚信着哥哥的承诺,在向日葵的坡道下等待着他的回归。
居然在ynoi上抢到rk1.。。感觉很神奇。。。果然是因为我是素学家吗QAQ
然后是题解。。。
首先发现每种颜色对答案的贡献都是独立的。。。
对于某一种颜色,直接算在多少个序列中出现比较困难。。
所以考虑用总数减去没有出现的次数。。
然后对每一行统计答案,然后乘法原理。。。遍历的时候要用set。。。
单点修改只会影响某两种颜色的贡献,暴力修改即可。。
代码
#include<iostream>
#include<cstdio>
#include<set>
#include<map>
#define LL long long
using namespace std;
inline int read(){
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void Out(LL a){
if(a>9) Out(a/10);
putchar(a%10+'0');
}
const LL N=200050;
const LL mod=19260817;
LL n,m,tot,num,LEN,NY;
LL a[N],hang[N],lie[N],len[N],hed[N];
LL sum[N],nsum[N],ans[N],zer[N];
set<LL> S[N];
map<LL,LL>lsh;
map<LL,LL> mp[N],c[N];
LL res=0,ss;
LL pow(LL x,LL y){
LL re=1;
while(y){
if(y&1) re=re*x%mod;
x=x*x%mod;y>>=1;
}
return re;
}
LL get(LL u,LL v){
LL l=1,r=tot;
while(l!=r){
LL mid=l+r>>1;
if(hang[mid]<u||(hang[mid]==u&&lie[mid]<v)) l=mid+1;
else r=mid;
}
return l;
}
int main(){
NY=pow((LL)2,mod-2);
n=read();m=read();ss=1;
for(LL i=1;i<=n;++i){
len[i]=read();
ss=ss*(LL)len[i]%mod*(LL)(len[i]+1)%mod*NY%mod;
LEN+=len[i];
}
//cout<<ss<<endl;
sum[0]=nsum[0]=1;
for(LL i=1;i<=n;++i){
sum[i]=(LL)(len[i]+1)*(LL)len[i]/(LL)2%mod;
sum[i]=sum[i]*sum[i-1]%mod;
nsum[i]=pow(sum[i],mod-2);
for(LL j=1;j<=len[i];++j){
a[++tot]=read();
if(!lsh[a[tot]]) {
lsh[a[tot]]=++num;
}
a[tot]=lsh[a[tot]];
S[a[tot]].insert(tot);
hang[tot]=i;lie[tot]=j;
}
}
LL u,v,w,x;
for(LL i=1;i<=num;++i){
u=0;v=0;ans[i]=1;
for(set<LL>::iterator it=S[i].begin();it!=S[i].end();++it){
//cout<<u<<" "<<v<<endl;
x=*it;
if(u==0){
ans[i]=ans[i]*sum[hang[x]-1]%mod;
mp[i][hang[x]]+=(LL)(lie[x]-1)*(LL)lie[x]/(LL)2;
}
else if(u!=hang[x]){
mp[i][u]+=(LL)(len[u]-v)*(LL)(len[u]-v+1)/(LL)2;
if(mp[i][u]>0) ans[i]=ans[i]*mp[i][u]%mod;
else zer[i]++;
ans[i]=ans[i]*sum[hang[x]-1]%mod*nsum[u]%mod;
mp[i][hang[x]]+=(LL)(lie[x]-1)*(LL)lie[x]/(LL)2;
}
else mp[i][hang[x]]+=(LL)(lie[x]-v-1)*(LL)(lie[x]-v)/2;
u=hang[x];v=lie[x];
}
mp[i][u]+=(LL)(len[u]-v)*(LL)(len[u]-v+1)/(LL)2;
if(mp[i][u]>0) ans[i]=ans[i]*mp[i][u]%mod;
else zer[i]++;
ans[i]=ans[i]*sum[n]%mod*nsum[u]%mod;
if(zer[i]>0) res+=ss;
else res+=ss-ans[i];
//cout<<ss<<" "<<ans[i]<<endl;
}
res=(res%mod+mod)%mod;
Out(res);puts("");
set<LL>::iterator l,r;
LL L,R,lx,rx;
while(m--){
u=read();v=read();w=read();
x=get(u,v);
l=S[a[x]].lower_bound(x);
r=l;
if(l==S[a[x]].begin()) L=0;
else {
--l;L=*l;
if(hang[L]!=u) L=0;
else L=lie[L];
}
++r;
if(r==S[a[x]].end()) R=len[u];
else{
R=(*r);
if(hang[R]!=u) R=len[u];
else R=lie[R]-1;
}
if(zer[a[x]]>0) res-=ss;
else res-=ss-ans[a[x]];
if(mp[a[x]][u]>0)ans[a[x]]=ans[a[x]]*pow(mp[a[x]][u],mod-2)%mod;
else --zer[a[x]];
mp[a[x]][u]-=(LL)(R-v)*(R-v+1)/2+(LL)(v-1-L)*(v-L)/2;
mp[a[x]][u]+=(LL)(R-L)*(R-L+1)/2;
if(mp[a[x]][u]>0) ans[a[x]]=ans[a[x]]*mp[a[x]][u]%mod;
else ++zer[a[x]];
if(zer[a[x]]>0) res+=ss;
else res+=ss-ans[a[x]];
S[a[x]].erase(x);
if(!lsh[w]){
lsh[w]=++num;
ans[num]=sum[n];
}
w=lsh[w];
a[x]=w;
S[w].insert(x);
l=S[a[x]].lower_bound(x);
r=l;
if(l==S[a[x]].begin()) L=0;
else {
--l;L=*l;
if(hang[L]!=u) L=0;
else L=lie[L];
}
++r;
if(r==S[a[x]].end()) R=len[u];
else{
R=(*r);
if(hang[R]!=u) R=len[u];
else R=lie[R]-1;
}
if(R==len[u]&&L==0) mp[w][u]=(LL)(len[u]+1)*(LL)len[u]/2;
if(zer[a[x]]>0) res-=ss;
else res-=ss-ans[a[x]];
if(mp[a[x]][u]>0)ans[a[x]]=ans[a[x]]*pow(mp[a[x]][u],mod-2)%mod;
else --zer[a[x]];
mp[a[x]][u]-=(LL)(R-L)*(R-L+1)/2;
mp[a[x]][u]+=(LL)(R-v)*(R-v+1)/2+(LL)(v-1-L)*(v-L)/2;
if(mp[a[x]][u]>0) ans[a[x]]=ans[a[x]]*mp[a[x]][u]%mod;
else ++zer[a[x]];
if(zer[a[x]]>0) res+=ss;
else res+=ss-ans[a[x]];
res=(res%mod+mod)%mod;
Out(res);puts("");
}
return 0;
}
This passage is made by Iscream-2001.
BZOJ 5395--[Ynoi2016]谁的梦(STL&容斥)的更多相关文章
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
- BZOJ 4671 异或图 | 线性基 容斥 DFS
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】
其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...
- BZOJ 2440 [中山市选2011]完全平方数 二分+容斥
直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...
- BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...
- BZOJ.4361.isn(DP 树状数组 容斥)
题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...
- ural 1932 The Secret of Identifier 容斥
主题链接:点击打开链接 stl+容斥 #include <cstdio> #include <cstring> #include <algorithm> #incl ...
- hdu 4336 Card Collector —— Min-Max 容斥
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4336 bzoj 4036 的简单版,Min-Max 容斥即可. 代码如下: #include<cst ...
随机推荐
- java Arrays.asList用法
java Arrays.asList用法 用途 Arrays是java容器相关操作的工具类,asList方法将Array转换为list,是Array和List之间的桥梁. 注意 Arrays.asLi ...
- 【hh】我胡汉三又回来了
hh 差不多半年没来机房了,高一的都已经碾压我100题了 开始得比较晚,估计比高一的早两三个月吧,停了这半年落下了不少. 但是没有关系啊,学OI纯粹是好玩嘛,一开始报名的时候根本不知道有联赛这回事(其 ...
- 【Log】logback指定配置文件(二)
通常我们在不同的环境使用不同的日志配置文件,本章讲指定logback的配置文件,如何使用logback参照[Log]logback的配置和使用(一) 写一个配置加载类,注意JoranConfigura ...
- 2018.10.18 poj2187Beauty Contest(旋转卡壳)
传送门 旋转卡壳板子题. 就是求凸包上最远点对. 直接上双指针维护旋转卡壳就行了. 注意要时刻更新最大值. 代码: #include<iostream> #include<cstdi ...
- 2018.09.27 网络协议(tarjan)
描述 一些学校连接在一个计算机网络上.学校之间存在软件支援协议.每个学校都有它应支援的学校名单(学校 a 支援学校 b ,并不表示学校 b 一定支援学校 a ).当某校获得一个新软件时,无论是直接得到 ...
- 2018.09.14 codechef Milestone(随机化算法)
传送门 由于存在不超过7条直线可以覆盖超过所有的点. 所以如果我们随机选点的话(每次随机两个) 那么得到的解恰好为最优解的概率是149" role="presentation&qu ...
- maven随笔
1.在我们项目顶层的POM文件中,我们会看到dependencyManagement元素.通过它元素来管理jar包的版本,让子项目中引用一个依赖而不用显示的列出版本号.Maven会沿着父子层次向上走, ...
- Java static说明
class Person{ String name;//成员变量,实例变量 static String country = "CN";//静态变量.类变量 public void ...
- 1) Spring_HelloWorld
1. Spring Tool Suite™ 方式一:下载对应eclipse版本的文件,离线安装 4.4.2 springsource-tool-suite-3.6.4.RELEASE-e4.4.2-u ...
- Object_C初始化方法, 遍历构造器
//版本1 //- (id)init //{ // work = @"工作"; // return self; //} // // //版本2:调用父类的init ...