这是一篇翻译的博客,原文链接在这里。这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门。我这里把这篇文章翻译一下,英语好的同学可以直接看原文。

大部分喜欢用Python来学习数据科学的人,应该听过scikit-learn,这个开源的Python库帮我们实现了一系列有关机器学习,数据处理,交叉验证和可视化的算法。其提供的接口非常好用。

这就是为什么DataCamp(原网站)要为那些已经开始学习Python库却没有一个简明且方便的总结的人提供这个总结。(原文是cheat sheet,翻译过来就是小抄,我这里翻译成总结,感觉意思上更积极点)。或者你压根都不知道scikit-learn如何使用,那这份总结将会帮助你快速的了解其相关的基本知识,让你快速上手。

你会发现,当你处理机器学习问题时,scikit-learn简直就是神器。

这份scikit-learn总结将会介绍一些基本步骤让你快速实现机器学习算法,主要包括:读取数据,数据预处理,如何创建模型来拟合数据,如何验证你的模型以及如何调参让模型变得更好。

总的来说,这份总结将会通过示例代码让你开始你的数据科学项目,你能立刻创建模型,验证模型,调试模型。(原文提供了pdf版的下载,内容和原文差不多)

A Basic Example

>>> from sklearn import neighbors, datasets, preprocessing
>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.metrics import accuracy_score
>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, :2], iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
>>> knn.fit(X_train, y_train)
>>> y_pred = knn.predict(X_test)
>>> accuracy_score(y_test, y_pred)

(补充,这里看不懂不要紧,其实就是个小例子,后面会详细解答)

Loading The Data

你的数据需要是numeric类型,然后存储成numpy数组或者scipy稀疏矩阵。我们也接受其他能转换成numeric数组的类型,比如Pandas的DataFrame。

>>> import numpy as np
>>> X = np.random.random((10,5))
>>> y = np.array(['M','M','F','F','M','F','M','M','F','F','F'])
>>> X[X < 0.7] = 0

Preprocessing The Data

Standardization

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(X_train)
>>> standardized_X = scaler.transform(X_train)
>>> standardized_X_test = scaler.transform(X_test)

Normalization

>>> from sklearn.preprocessing import Normalizer
>>> scaler = Normalizer().fit(X_train)
>>> normalized_X = scaler.transform(X_train)
>>> normalized_X_test = scaler.transform(X_test)

Binarization

>>> from sklearn.preprocessing import Binarizer
>>> binarizer = Binarizer(threshold=0.0).fit(X)
>>> binary_X = binarizer.transform(X)

Encoding Categorical Features

>>> from sklearn.preprocessing import LabelEncoder
>>> enc = LabelEncoder()
>>> y = enc.fit_transform(y)

Imputing Missing Values

>>>from sklearn.preprocessing import Imputer
>>>imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>>imp.fit_transform(X_train)

Generating Polynomial Features

>>> from sklearn.preprocessing import PolynomialFeatures)
>>> poly = PolynomialFeatures(5))
>>> oly.fit_transform(X))

Training And Test Data

>>> from sklearn.cross_validation import train_test_split)
>>> X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0))

Create Your Model

Supervised Learning Estimators

Linear Regression

>>> from sklearn.linear_model import LinearRegression)
>>> lr = LinearRegression(normalize=True))

Support Vector Machines (SVM)

>>> from sklearn.svm import SVC)
>>> svc = SVC(kernel='linear'))

Naive Bayes

>>> from sklearn.naive_bayes import GaussianNB)
>>> gnb = GaussianNB())

KNN

>>> from sklearn import neighbors)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5))

Unsupervised Learning Estimators

Principal Component Analysis (PCA)

>>> from sklearn.decomposition import PCA)
>>> pca = PCA(n_components=0.95))

K Means

>>> from sklearn.cluster import KMeans)
>>> k_means = KMeans(n_clusters=3, random_state=0))

Model Fitting

Supervised learning

>>> lr.fit(X, y))
>>> knn.fit(X_train, y_train))
>>> svc.fit(X_train, y_train))

Unsupervised Learning

>>> k_means.fit(X_train))
>>> pca_model = pca.fit_transform(X_train))

Prediction

Supervised Estimators

>>> y_pred = svc.predict(np.random.random((2,5))))
>>> y_pred = lr.predict(X_test))
>>> y_pred = knn.predict_proba(X_test))

Unsupervised Estimators

>>> y_pred = k_means.predict(X_test))

Evaluate Your Model's Performance

Classification Metrics

Accuracy Score

>>> knn.score(X_test, y_test))
>>> from sklearn.metrics import accuracy_score)
>>> accuracy_score(y_test, y_pred))

Classification Report

>>> from sklearn.metrics import classification_report)
>>> print(classification_report(y_test, y_pred)))

Confusion Matrix

>>> from sklearn.metrics import confusion_matrix)
>>> print(confusion_matrix(y_test, y_pred)))

Regression Metrics

Mean Absolute Error

>>> from sklearn.metrics import mean_absolute_error)
>>> y_true = [3, -0.5, 2])
>>> mean_absolute_error(y_true, y_pred))

Mean Squared Error

>>> from sklearn.metrics import mean_squared_error)
>>> mean_squared_error(y_test, y_pred))

R2 Score

>>> from sklearn.metrics import r2_score)
>>> r2_score(y_true, y_pred))

Clustering Metrics

Adjusted Rand Index

>>> from sklearn.metrics import adjusted_rand_score)
>>> adjusted_rand_score(y_true, y_pred))

Homogeneity

>>> from sklearn.metrics import homogeneity_score)
>>> homogeneity_score(y_true, y_pred))

V-measure

>>> from sklearn.metrics import v_measure_score)
>>> metrics.v_measure_score(y_true, y_pred))

Cross-Validation

>>> print(cross_val_score(knn, X_train, y_train, cv=4))
>>> print(cross_val_score(lr, X, y, cv=2))

Tune Your Model

Grid Search

>>> from sklearn.grid_search import GridSearchCV
>>> params = {"n_neighbors": np.arange(1,3), "metric": ["euclidean", "cityblock"]}
>>> grid = GridSearchCV(estimator=knn,param_grid=params)
>>> grid.fit(X_train, y_train)
>>> print(grid.best_score_)
>>> print(grid.best_estimator_.n_neighbors)

Randomized Parameter Optimization

>>> from sklearn.grid_search import RandomizedSearchCV
>>> params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]}
>>> rsearch = RandomizedSearchCV(estimator=knn,
param_distributions=params,
cv=4,
n_iter=8,
random_state=5)
>>> rsearch.fit(X_train, y_train)
>>> print(rsearch.best_score_)

Going Further

学习完上面的例子后,你可以通过our scikit-learn tutorial for beginners来学习更多的例子。另外你可以学习matplotlib来可视化数据。

不要错过后续教程 Bokeh cheat sheet, the Pandas cheat sheet or the Python cheat sheet for data science.

Python Machine Learning: Scikit-Learn Tutorial的更多相关文章

  1. Python机器学习 (Python Machine Learning 中文版 PDF)

    Python机器学习介绍(Python Machine Learning 中文版) 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早 ...

  2. [Python & Machine Learning] 学习笔记之scikit-learn机器学习库

    1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...

  3. Python -- machine learning, neural network -- PyBrain 机器学习 神经网络

    I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machi ...

  4. Python机器学习介绍(Python Machine Learning 中文版)

    Python机器学习 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮 ...

  5. 《Python Machine Learning》索引

    目录部分: 第一章:赋予计算机从数据中学习的能力 第二章:训练简单的机器学习算法——分类 第三章:使用sklearn训练机器学习分类器 第四章:建立好的训练集——数据预处理 第五章:通过降维压缩数据 ...

  6. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  7. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. 机器学习算法之旅A Tour of Machine Learning Algorithms

    In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...

随机推荐

  1. Skype for Business Server 2015 企业语音部署和配置

    Skype for Business Server 2015包含的企业语音功能可实现更丰富的通信和协作.例如,可以将企业语音部署配置为启用Skype for Business Server 2015客 ...

  2. 解决Struts2 json-plugin Date或Timestamp等日期格式带T的问题

    如果没有对日期时间对象类进行json日期格式声明,会出现类似"2013-06-18T12:08:56.23"日期,在日期中间多出一个T字母: 从通过查询数据,以及调试程序发现直到返 ...

  3. 为什么说Java中只有值传递----说服自己

    在开始深入讲解之前,有必要纠正一下大家以前的那些错误看法了.如果你有以下想法,那么你有必要好好阅读本文. 错误理解一:值传递和引用传递,区分的条件是传递的内容,如果是个值,就是值传递.如果是个引用,就 ...

  4. codeforces 293E Close Vertices

    题目链接 正解:点分治+树状数组. 点分治板子题,直接点分以后按照$w$排序,扫指针的时候把$w$合法的路径以$l$为下标加入树状数组统计就行了. 写这道题只是想看看我要写多久..事实证明我确实是老年 ...

  5. 扯不清楚的virtual和abstract

    定义Person类: class Person { public void Say() { Console.WriteLine("I am a person"); } } 现在,我 ...

  6. Docker镜像搭建Linux下samba共享目录

    Samba 是 SMB/CIFS 网络协议的重新实现, 它作为 NFS 的补充使得在 Linux.OS/2.DOS 和 Windows 系统中进行文件共享.打印机共享更容易实现.SMB协议是客户机/服 ...

  7. Day2 Spring初识(二)

    Bean的实例化 bean实例化方式有3种:默认构造.静态工厂.实例工厂 默认构造 调用无参构造, 属性+setter User.java package entity; public class U ...

  8. 关于EasyPoi导出Excel

    如果你觉得Easypoi不好用,喜欢用传统的poi,可以参考我的这篇博客:Springmvc导出Excel(maven) 当然了,万变不离其宗.Easypoi的底层原理还是poi.正如MyBatis ...

  9. bootstrap 多选款样式:bootstrap-switch

    有时候,为了美化checkbox后者radio的时候,让用户体验起来更好,jquery里有icheck. bootstrap里有bootstrap-switch,就简单介绍下bootstrap-swi ...

  10. ajax和原生ajax、文件的上传

    ajax理解: ajax发送的请求是异步处理的.也就是说如下形式: function f1(){ $.ajax( { ....... success:function(){ a= return a } ...