Python Machine Learning: Scikit-Learn Tutorial
这是一篇翻译的博客,原文链接在这里。这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门。我这里把这篇文章翻译一下,英语好的同学可以直接看原文。
大部分喜欢用Python来学习数据科学的人,应该听过scikit-learn,这个开源的Python库帮我们实现了一系列有关机器学习,数据处理,交叉验证和可视化的算法。其提供的接口非常好用。
这就是为什么DataCamp(原网站)要为那些已经开始学习Python库却没有一个简明且方便的总结的人提供这个总结。(原文是cheat sheet,翻译过来就是小抄,我这里翻译成总结,感觉意思上更积极点)。或者你压根都不知道scikit-learn如何使用,那这份总结将会帮助你快速的了解其相关的基本知识,让你快速上手。
你会发现,当你处理机器学习问题时,scikit-learn简直就是神器。
这份scikit-learn总结将会介绍一些基本步骤让你快速实现机器学习算法,主要包括:读取数据,数据预处理,如何创建模型来拟合数据,如何验证你的模型以及如何调参让模型变得更好。

总的来说,这份总结将会通过示例代码让你开始你的数据科学项目,你能立刻创建模型,验证模型,调试模型。(原文提供了pdf版的下载,内容和原文差不多)
A Basic Example
>>> from sklearn import neighbors, datasets, preprocessing
>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.metrics import accuracy_score
>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, :2], iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
>>> knn.fit(X_train, y_train)
>>> y_pred = knn.predict(X_test)
>>> accuracy_score(y_test, y_pred)
(补充,这里看不懂不要紧,其实就是个小例子,后面会详细解答)
Loading The Data
你的数据需要是numeric类型,然后存储成numpy数组或者scipy稀疏矩阵。我们也接受其他能转换成numeric数组的类型,比如Pandas的DataFrame。
>>> import numpy as np
>>> X = np.random.random((10,5))
>>> y = np.array(['M','M','F','F','M','F','M','M','F','F','F'])
>>> X[X < 0.7] = 0
Preprocessing The Data
Standardization
>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(X_train)
>>> standardized_X = scaler.transform(X_train)
>>> standardized_X_test = scaler.transform(X_test)
Normalization
>>> from sklearn.preprocessing import Normalizer
>>> scaler = Normalizer().fit(X_train)
>>> normalized_X = scaler.transform(X_train)
>>> normalized_X_test = scaler.transform(X_test)
Binarization
>>> from sklearn.preprocessing import Binarizer
>>> binarizer = Binarizer(threshold=0.0).fit(X)
>>> binary_X = binarizer.transform(X)
Encoding Categorical Features
>>> from sklearn.preprocessing import LabelEncoder
>>> enc = LabelEncoder()
>>> y = enc.fit_transform(y)
Imputing Missing Values
>>>from sklearn.preprocessing import Imputer
>>>imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>>imp.fit_transform(X_train)
Generating Polynomial Features
>>> from sklearn.preprocessing import PolynomialFeatures)
>>> poly = PolynomialFeatures(5))
>>> oly.fit_transform(X))
Training And Test Data
>>> from sklearn.cross_validation import train_test_split)
>>> X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0))
Create Your Model
Supervised Learning Estimators
Linear Regression
>>> from sklearn.linear_model import LinearRegression)
>>> lr = LinearRegression(normalize=True))
Support Vector Machines (SVM)
>>> from sklearn.svm import SVC)
>>> svc = SVC(kernel='linear'))
Naive Bayes
>>> from sklearn.naive_bayes import GaussianNB)
>>> gnb = GaussianNB())
KNN
>>> from sklearn import neighbors)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5))
Unsupervised Learning Estimators
Principal Component Analysis (PCA)
>>> from sklearn.decomposition import PCA)
>>> pca = PCA(n_components=0.95))
K Means
>>> from sklearn.cluster import KMeans)
>>> k_means = KMeans(n_clusters=3, random_state=0))
Model Fitting
Supervised learning
>>> lr.fit(X, y))
>>> knn.fit(X_train, y_train))
>>> svc.fit(X_train, y_train))
Unsupervised Learning
>>> k_means.fit(X_train))
>>> pca_model = pca.fit_transform(X_train))
Prediction
Supervised Estimators
>>> y_pred = svc.predict(np.random.random((2,5))))
>>> y_pred = lr.predict(X_test))
>>> y_pred = knn.predict_proba(X_test))
Unsupervised Estimators
>>> y_pred = k_means.predict(X_test))
Evaluate Your Model's Performance
Classification Metrics
Accuracy Score
>>> knn.score(X_test, y_test))
>>> from sklearn.metrics import accuracy_score)
>>> accuracy_score(y_test, y_pred))
Classification Report
>>> from sklearn.metrics import classification_report)
>>> print(classification_report(y_test, y_pred)))
Confusion Matrix
>>> from sklearn.metrics import confusion_matrix)
>>> print(confusion_matrix(y_test, y_pred)))
Regression Metrics
Mean Absolute Error
>>> from sklearn.metrics import mean_absolute_error)
>>> y_true = [3, -0.5, 2])
>>> mean_absolute_error(y_true, y_pred))
Mean Squared Error
>>> from sklearn.metrics import mean_squared_error)
>>> mean_squared_error(y_test, y_pred))
R2 Score
>>> from sklearn.metrics import r2_score)
>>> r2_score(y_true, y_pred))
Clustering Metrics
Adjusted Rand Index
>>> from sklearn.metrics import adjusted_rand_score)
>>> adjusted_rand_score(y_true, y_pred))
Homogeneity
>>> from sklearn.metrics import homogeneity_score)
>>> homogeneity_score(y_true, y_pred))
V-measure
>>> from sklearn.metrics import v_measure_score)
>>> metrics.v_measure_score(y_true, y_pred))
Cross-Validation
>>> print(cross_val_score(knn, X_train, y_train, cv=4))
>>> print(cross_val_score(lr, X, y, cv=2))
Tune Your Model
Grid Search
>>> from sklearn.grid_search import GridSearchCV
>>> params = {"n_neighbors": np.arange(1,3), "metric": ["euclidean", "cityblock"]}
>>> grid = GridSearchCV(estimator=knn,param_grid=params)
>>> grid.fit(X_train, y_train)
>>> print(grid.best_score_)
>>> print(grid.best_estimator_.n_neighbors)
Randomized Parameter Optimization
>>> from sklearn.grid_search import RandomizedSearchCV
>>> params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]}
>>> rsearch = RandomizedSearchCV(estimator=knn,
param_distributions=params,
cv=4,
n_iter=8,
random_state=5)
>>> rsearch.fit(X_train, y_train)
>>> print(rsearch.best_score_)
Going Further
学习完上面的例子后,你可以通过our scikit-learn tutorial for beginners来学习更多的例子。另外你可以学习matplotlib来可视化数据。
不要错过后续教程 Bokeh cheat sheet, the Pandas cheat sheet or the Python cheat sheet for data science.
Python Machine Learning: Scikit-Learn Tutorial的更多相关文章
- Python机器学习 (Python Machine Learning 中文版 PDF)
Python机器学习介绍(Python Machine Learning 中文版) 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早 ...
- [Python & Machine Learning] 学习笔记之scikit-learn机器学习库
1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...
- Python -- machine learning, neural network -- PyBrain 机器学习 神经网络
I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machi ...
- Python机器学习介绍(Python Machine Learning 中文版)
Python机器学习 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮 ...
- 《Python Machine Learning》索引
目录部分: 第一章:赋予计算机从数据中学习的能力 第二章:训练简单的机器学习算法——分类 第三章:使用sklearn训练机器学习分类器 第四章:建立好的训练集——数据预处理 第五章:通过降维压缩数据 ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习算法之旅A Tour of Machine Learning Algorithms
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...
随机推荐
- Windows下使用Git Bash上传项目到GitHub
http://blog.csdn.net/qq_28304687/article/details/69959238?locationNum=8&fps=1
- 拟牛顿 DFP matlab
function sevnn x=[1,0]'; [x,val]=dfp('fun','gfun',x) end function f=fun(x) f=100*(x(1)^2-x(2))^2+(x( ...
- MongoDB 多实例安装成服务
转发自:https://www.cnblogs.com/GainLoss/p/6906937.html 1.在mongodb的官网上下载安装包 https://www.mongodb.com/down ...
- Git 如何上传文件夹
Github开源代码库以及版本控制系统,可以托管各种git库,并提供web访问界面.很多朋友喜欢喜欢将个人Blog或小型项目托管到github,这样既方便又简单. 下面介绍如何将本地文件上传到gith ...
- JDK/bin目录下的不同exe文件的用途
新安装完JDk 大家是否发现安装目录的bin文件夹有很多exe文件 下面就为大家讲解不同exe文件的用途 javac:Java编译器,将Java源代码换成字节代 java:Java解释器,直接从类文件 ...
- arcgis 10.1 导入数据到oracle 发布地图服务
机器配置说明 数据库服务器 系统:linux 软件:oracle 11G 64位 Arcgis server服务器 系统:win7 专业版 软件:arcgis server 10.1.win64_11 ...
- [AHOI2009]飞行棋
嘟嘟嘟 刚开始想这道题的时候确实很蒙,只想到矩形对边做对应的弧长相等,然后想办法凑出相等的弧长.其实正解很简单,不要去想边,应该想对角线,因为根据初中园的知识,这个矩形的对角线是圆的直径,而直径所对的 ...
- sed 以及 awk用法
sed 格式 sed[options] "script" FILE.... 选项: -n:静默模式,不输出模式空间内的内容:默认打印空间模式的内容 -r:扩展的正则表达式 -f 文 ...
- virtualbox+vagrant学习-3-Vagrant Share-1-简介
Vagrant Share 通过 ngrok 内网穿透功能实现让全世界人可以访问虚拟机的服务 Vagrant Share允许你与世界上的任何人共享您的Vagrant环境,几乎支持你在任何网络环境中使用 ...
- Google免费GPU使用教程(Google Colab Colaboratory)
参考: https://www.234du.com/1154.html https://mp.weixin.qq.com/s/TGTToLYSQJui94-bQC4HIQ 注册gmail时遇到手机号无 ...