从命令说起,在u-boot输入下列命令:

nand write 40008000 0 20000
命令的意思是将内存0x40008000开始的部分写入nand,从nand地址0开始写,写入长度是0x200000

回车之后,代码如何运行呢?命令的输入,执行之前都已经分析过了,初始化过程也分析了

请参阅:

http://blog.csdn.net/andy_wsj/article/details/9335755

http://blog.csdn.net/andy_wsj/article/details/9339247

http://blog.csdn.net/andy_wsj/article/details/8614905

执行这条命令,将调用\u-boot-sunxi-sunxi\common\cmd_nand.c内的函数do_nand。

int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])

nand write 40008000 0 20000在参数argv中,而且

argv[0] = "nand"

argv[1] = "write"

argv[2] = "40008000"

argv[3] = "0"

argv[4] = "20000"

argc = 5 参数的个数

分析一下do_nand函数的片段,篇幅关系,只保留写操作部分:

nt do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])

{


int i, ret = 0;


ulong addr;


loff_t off, size;


char *cmd, *s;


nand_info_t *nand;

#ifdef CONFIG_SYS_NAND_QUIET


int quiet = CONFIG_SYS_NAND_QUIET;

#else


int quiet = 0;

#endif


const char *quiet_str = getenv("quiet");


int dev = nand_curr_device;                 //当前NAND芯片,如果板上有多个芯片,则不能直接赋值,大部分板子都是一个NAND


int repeat = flag & CMD_FLAG_REPEAT;

/* at least two arguments please */


if (argc < 2)


goto usage;

if (quiet_str)


quiet = simple_strtoul(quiet_str, NULL, 0) != 0;

cmd = argv[1];   //cmd就指向命令“write”,

........判断是什么命令,多余判断删除了..............

/* The following commands operate on the current device, unless


* overridden by a partition specifier.  Note that if somehow the


* current device is invalid, it will have to be changed to a valid


* one before these commands can run, even if a partition specifier


* for another device is to be used.


*/


if (dev < 0 || dev >= CONFIG_SYS_MAX_NAND_DEVICE ||  //判断芯片是否存在或是否定义


   !nand_info[dev].name) {


puts("\nno devices available\n");


return 1;


}


nand = &nand_info[dev];   //获取定义的nand芯片信息

  

  ................

  


if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {  //nand读写操作


size_t rwsize;


ulong pagecount = 1;


int read;


int raw;

if (argc < 4)  


goto usage;

addr = (ulong)simple_strtoul(argv[2], NULL, 16);  //将argv[2] = "40008000"转换成16进制,0x40008000

read = strncmp(cmd, "read", 4) == 0; /* 1 = read, 0 = write */  //判断读写操作类型


printf("\nNAND %s: ", read ? "read" : "write");

nand = &nand_info[dev];

s = strchr(cmd, '.');   //看看是否带有扩展命令,如write.raw, write.jffs2等等,输入是“write”,结果s = NULL;

if (s && !strcmp(s, ".raw")) {


      ......省略.....


      


} else {  //执行这里,计算地址偏移量,长度


if (arg_off_size(argc - 3, argv + 3, &dev, 


&off, &size) != 0)


return 1;

rwsize = size;


}

if (!s || !strcmp(s, ".jffs2") ||      //实际执行这里


   !strcmp(s, ".e") || !strcmp(s, ".i")) {


if (read)


ret = nand_read_skip_bad(nand, off, &rwsize,


(u_char *)addr);


else


ret = nand_write_skip_bad(nand, off, &rwsize,   //执行函数nand_write_skip_bad


 (u_char *)addr, 0);

} else if (......省略.....) {


......省略.....


......省略.....

} else {


printf("Unknown nand command suffix '%s'.\n", s);


return 1;


}

printf(" %zu bytes %s: %s\n", rwsize,


      read ? "read" : "written", ret ? "ERROR" : "OK");

return ret == 0 ? 0 : 1;


}

..........

return 0;

}

来看看函数nand_write_skip_bad,在文件\u-boot-sunxi-sunxi\drivers\mtd\nand\nand_util.c内:

经过do_nand处理,可知参数就是输入命令的内容:

offset   为  0

*length  为 0x200000

buffer   指向0x40008000

int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,


u_char *buffer, int flags)

{


int rval = 0, blocksize;


size_t left_to_write = *length;


u_char *p_buffer = buffer;


int need_skip;

#ifdef CONFIG_CMD_NAND_YAFFS


if (flags & WITH_YAFFS_OOB) {


if (flags & ~WITH_YAFFS_OOB)


return -EINVAL;

int pages;


pages = nand->erasesize / nand->writesize;


blocksize = (pages * nand->oobsize) + nand->erasesize;


if (*length % (nand->writesize + nand->oobsize)) {


printf ("Attempt to write incomplete page"


" in yaffs mode\n");


return -EINVAL;


}


} else

#endif


{


blocksize = nand->erasesize;  //执行这里,nand的刷新都是以块为单位的,所以blocksize就是刷新的长度,对于cubieboard上的nand芯片,是1M+80K


}

/*


* nand_write() handles unaligned, partial page writes.


*


* We allow length to be unaligned, for convenience in


* using the $filesize variable.


*


* However, starting at an unaligned offset makes the


* semantics of bad block skipping ambiguous (really,


* you should only start a block skipping access at a


* partition boundary).  So don't try to handle that.


*/


if ((offset & (nand->writesize - 1)) != 0) {    //输入的偏移量要以块长度对齐


printf ("Attempt to write non page aligned data\n");


*length = 0;


return -EINVAL;


}

need_skip = check_skip_len(nand, offset, *length);  //判断是否需要越过坏块,这里需要坏块读取操作,nand驱动的一个功能


if (need_skip < 0) {


printf ("Attempt to write outside the flash area\n");


*length = 0;


return -EINVAL;


}

if (!need_skip && !(flags & WITH_DROP_FFS)) {        //不需要,即写的部分没有坏块


rval = nand_write (nand, offset, length, buffer);  //直接写


if (rval == 0)


return 0;

*length = 0;


printf ("NAND write to offset %llx failed %d\n",


offset, rval);


return rval;


}

while (left_to_write > 0) {  // 剩下要写的字节数,开始就是命令输入的0x200000


size_t block_offset = offset & (nand->erasesize - 1);


size_t write_size, truncated_write_size;

WATCHDOG_RESET ();

if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) { //从开始的位置往后找坏块,直到找到一个可写的为止


printf ("Skip bad block 0x%08llx\n",


offset & ~(nand->erasesize - 1));


offset += nand->erasesize - block_offset;


continue;


}

if (left_to_write < (blocksize - block_offset))  //找到可写的块,判断写入的数据是不是小于一块,对于cubieboard,是1M


write_size = left_to_write;                    //由于输入的是0x200000即2M,因此需要写两次


else


write_size = blocksize - block_offset;

#ifdef CONFIG_CMD_NAND_YAFFS

.......

#endif


{


truncated_write_size = write_size;

#ifdef CONFIG_CMD_NAND_TRIMFFS

 .......

#endif

rval = nand_write(nand, offset, &truncated_write_size,  //调用nand_write,写入数据


p_buffer);


offset += write_size;         //偏移量往后移动


p_buffer += write_size;       //数据指针往后移动


}

if (rval != 0) {


printf ("NAND write to offset %llx failed %d\n",


offset, rval);


*length -= left_to_write;


return rval;


}

left_to_write -= write_size;   //剩下的字节数,循环写的条件


}

return 0;

}

无论如何写,有没有坏块,最后都使用函数nand_write,接下来再看看这个函数

在文件在文件\u-boot-sunxi-sunxi\drivers\mtd\nand\nand_base.c内:

这个函数就是写的准备,这已经执行到驱动代码的逻辑层了

static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,


 size_t *retlen, const uint8_t *buf)

{


struct nand_chip *chip = mtd->priv;


int ret;

/* Do not allow writes past end of device */ 不能超过最大长度


if ((to + len) > mtd->size)


return -EINVAL;


if (!len)


return 0;

nand_get_device(chip, mtd, FL_WRITING);  //获取设备,就是获取需要写的那个nand芯片的数据

chip->ops.len = len;                     //写入的长度,按输入命令,第一次时这个就是一个块的长度


chip->ops.datbuf = (uint8_t *)buf;       //数据所在的位置,第一次就是输入的内存地址0x40008000处


chip->ops.oobbuf = NULL;

ret = nand_do_write_ops(mtd, to, &chip->ops);   //执行写操作

*retlen = chip->ops.retlen;

nand_release_device(mtd);

return ret;

}

再看看nand_do_write_ops函数,就在这个文件nand_base.c内,nand_write函数的上面:

到了这里,其实已经接近硬件操作了,如果要写一个nand驱动,实现写操作,

看看这个函数,就是知道需要实现的几个操作了。下面对几个关键的地方进行标记,说明写驱动需要实现的功能

static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,


    struct mtd_oob_ops *ops)

{


int chipnr, realpage, page, blockmask, column;


struct nand_chip *chip = mtd->priv;


uint32_t writelen = ops->len;

uint32_t oobwritelen = ops->ooblen;


uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?


mtd->oobavail : mtd->oobsize;

uint8_t *oob = ops->oobbuf;


uint8_t *buf = ops->datbuf;


int ret, subpage;

ops->retlen = 0;


if (!writelen)


return 0;

column = to & (mtd->writesize - 1);


subpage = column || (writelen & (mtd->writesize - 1));

if (subpage && oob)


return -EINVAL;

chipnr = (int)(to >> chip->chip_shift);


chip->select_chip(mtd, chipnr);          //芯片片选,由于各种CPU的片选方式或寄存器不同,或者板子电路不同,所以用户必须自己实现这个函数

/* Check, if it is write protected */


if (nand_check_wp(mtd)) {


printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");


return -EIO;


}

realpage = (int)(to >> chip->page_shift);


page = realpage & chip->pagemask;


blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;

/* Invalidate the page cache, when we write to the cached page */


if (to <= (chip->pagebuf << chip->page_shift) &&


   (chip->pagebuf << chip->page_shift) < (to + ops->len))


chip->pagebuf = -1;

/* If we're not given explicit OOB data, let it be 0xFF */


if (likely(!oob))


memset(chip->oob_poi, 0xff, mtd->oobsize);

/* Don't allow multipage oob writes with offset */


if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))


return -EINVAL;

while (1) {    输入的长度是块,只能一页一页的写,所以要循环写


WATCHDOG_RESET();

int bytes = mtd->writesize;


int cached = writelen > bytes && page != blockmask;


uint8_t *wbuf = buf;

/* Partial page write ? */


if (unlikely(column || writelen < (mtd->writesize - 1))) {


cached = 0;


bytes = min_t(int, bytes - column, (int) writelen);


chip->pagebuf = -1;


memset(chip->buffers->databuf, 0xff, mtd->writesize);


memcpy(&chip->buffers->databuf[column], buf, bytes);


wbuf = chip->buffers->databuf;


}

if (unlikely(oob)) {


size_t len = min(oobwritelen, oobmaxlen);


oob = nand_fill_oob(chip, oob, len, ops);


oobwritelen -= len;


}

ret = chip->write_page(mtd, chip, wbuf, page, cached,  //写一页,这个函数有通用的实现,若不适合自己的芯片,则需要自己实现页写功能


      (ops->mode == MTD_OOB_RAW));


if (ret)


break;

writelen -= bytes;


if (!writelen)


break;

column = 0;


buf += bytes;


realpage++;

page = realpage & chip->pagemask;


/* Check, if we cross a chip boundary */


if (!page) {


chipnr++;


chip->select_chip(mtd, -1);


chip->select_chip(mtd, chipnr);


}


}

ops->retlen = ops->len - writelen;


if (unlikely(oob))


ops->oobretlen = ops->ooblen;


return ret;

}

再看看通用的页写函数

在函数int nand_scan_tail(struct mtd_info *mtd)内有两句代码:

......


if (!chip->write_page)


chip->write_page = nand_write_page;

......

如果用户没初始化页写函数,则使用默认函数nand_write_page,这就是需要分析的函数

static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,


  const uint8_t *buf, int page, int cached, int raw)

{


int status;

chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);   //命令函数也有默认版本,对单次写地址的芯片如2440,6410,可以使用默认函数,但是不适合A10

                                                    //A10的地址是两个寄存器,每个32位,理论可以支持64位的地址宽度

                                                    //这里执行nand命令NAND_CMD_SEQIN,值是0x80


if (unlikely(raw))                                //观察调用的地方,可以看出 raw = 2    ===>  ops->mode == MTD_OOB_RAW 


chip->ecc.write_page_raw(mtd, chip, buf);       //ecc模块也有默认实现


else


chip->ecc.write_page(mtd, chip, buf);

/*


* Cached progamming disabled for now, Not sure if its worth the


* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)


*/


cached = 0;

if (!cached || !(chip->options & NAND_CACHEPRG)) {

chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);   ////这里执行nand命令NAND_CMD_PAGEPROG,值是0x10


status = chip->waitfunc(mtd, chip);               //等待写完成,这个需要用自己实现


* See if operation failed and additional status checks are


* available


*/


if ((status & NAND_STATUS_FAIL) && (chip->errstat))


status = chip->errstat(mtd, chip, FL_WRITING, status,


      page);

if (status & NAND_STATUS_FAIL)


return -EIO;


} else {


chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);


status = chip->waitfunc(mtd, chip);


}

#ifdef CONFIG_MTD_NAND_VERIFY_WRITE


/* Send command to read back the data */


chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

if (chip->verify_buf(mtd, buf, mtd->writesize))


return -EIO;

#endif


return 0;

}

再看看默认的chip->ecc.write_page_raw函数干了什么事情

在函数int nand_scan_tail(struct mtd_info *mtd)内有两句代码:

......


if (!chip->ecc.write_page_raw)


chip->ecc.write_page_raw = nand_write_page_raw;

......

如果用户没初始化页写函数,则使用默认函数nand_write_page_raw,这就是需要分析的函数

这个函数将数据写入,写入什么位置呢?还要看看它调用的函数chip->write_buf

static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,


const uint8_t *buf)

{


chip->write_buf(mtd, buf, mtd->writesize); 


chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);

}

再看看默认的chip->write_buf函数

在函数int nand_scan_tail(struct mtd_info *mtd)内有两句代码:

......


if (!chip->write_buf)


chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;

......

如果用户没初始化页写函数,8位操作则使用默认函数nand_write_buf,16位操作则使用默认函数nand_write_buf16,

cubieboard使用的nand芯片是8位的,就看看nand_write_buf函数

void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)

{


int i;


struct nand_chip *chip = mtd->priv;

for (i = 0; i < len; i++)


writeb(buf[i], chip->IO_ADDR_W);

}

将数据写入寄存器chip->IO_ADDR_W,即写到nand缓存

从这里可以看出,上面的写操作过程就是:

命令0x80-->写数据-->命令0x10-->等待完成

查看cubieboard上面nand芯片K9GBG08U0A的数据手册,页写操作的过程真好相同,因此这个驱动可以使用

使用的前提就是需要实现一下几个函数:

片选函数:    chip->select_chip

命令操作函数:chip->cmdfunc

chip->waitfunc调用的两个函数:

芯片就绪函数:chip->dev_ready

字节读取函数:chip->read_byte

到这里,我都没有分析数据结构,只描述了调用流程

观察各个函数,贯穿整个过程的数据结构有两个

struct mtd_info

struct nand_chip

这两个数据结构在初始化分析时已经讲过了

u-boot的nand驱动写过程分析的更多相关文章

  1. 基于MTD的NAND驱动开发、K9F1G08 2K page、Yaffs2 Files System

    转载:http://hi.baidu.com/cui1206/item/1d4119e376132513585dd886 基于MTD的NAND驱动(linux-2.6.22.10内核),目前已可以在该 ...

  2. MTD中的nand驱动初步分析---面向u-boot

    之前提到nand驱动的初始化分析,有一个结构体 struct mtd_info始终贯穿这些代码 再来分析一下这个结构体的基本功能,如何初始化,如何使用 一.分析过程 看看结构体的出现和使用方式 第一次 ...

  3. MTD下的Nand驱动

    目录 MTD下的Nand驱动 引入 平台设备资源文件 关键数据结构 平台框架 s3c24xx_nand_probe nand_scan s3c2410_nand_add_partition add_m ...

  4. NAND驱动

    NAND FLASH是一个存储芯片 那么: 这样的操作很合理"读地址A的数据,把数据B写到地址A" 问1. 原理图上NAND FLASH和S3C2440之间只有数据线,      ...

  5. nand烧写分析/内核在启动过程中式如何将这个文件映射成/目录及各子目录的?

    我用的是ramdisk.image.gz,烧写在flash的0x10140000处 我不太明白内核在启动过程中式如何将这个文件映射成/目录及各子目录的? 如果ramdisk.image.gz在flas ...

  6. LPC1788 nand驱动

    Lpc 1788自带有emc接口用于驱动nandflash,norflash,sdram设备,对于nandflash驱动因为配置简单,时序也简单 首先,针对nandflash而言应当在系统中有三个地址 ...

  7. Linux-Nand Flash驱动(分析MTD层并制作NAND驱动)

    1.本节使用的nand flash型号为K9F2G08U0M,它的命令如下: 1.1我们以上图的read id(读ID)为例,它的时序图如下: 首先需要使能CE片选 1)使能CLE 2)发送0X90命 ...

  8. 24.Linux-Nand Flash驱动(分析MTD层并制作NAND驱动)

    1.本节使用的nand flash型号为K9F2G08U0M,它的命令如下: 1.1我们以上图的read id(读ID)为例,它的时序图如下: 首先需要使能CE片选 1)使能CLE 2)发送0X90命 ...

  9. ESP8266乐鑫版本的(支持云端升级 (Boot 模式)烧写方法,(V1.5.4官方介绍如下)(BOOT模式)

    硬件平台: nodeMCU devkit核心板,带ch340g,应该是仿造的,官方是cp2102驱动,安信可科技有连接https://wiki.ai-thinker.com/esp8266/board ...

随机推荐

  1. Solr入门之SolrServer实例化方式

    随着solr版本的不断升级, 差异越来越大, 从以前的 solr1.2 到现在的 solr4.3, 无论是类还是功能都有很大的变换, 为了能及时跟上新版本的步伐, 在此将新版本的使用做一个简单的入门说 ...

  2. csharp .net vb 复制图像

    .NET Compact Framework 不支持 Image.Clone 方法,可是仍能够复制图像和图像的某些部分.以下的演示例子演示怎样运行以下操作: 定义一个方法以创建位图. 定义一个重载方法 ...

  3. 11g的alert日志路径

    一个测试库,11g,没有sys账户,无法用show parameter dump查看alert日志的路径,以前也碰到过,但后来就不了了之了.这次深挖下,也参考了下一些网上的帖子,于是找到了: $ORA ...

  4. BZOJ 2599 [IOI2011]Race【Tree,点分治】

    给出N(1 <= N <= 200000)个结点的树,求长度等于K(1 <= K <= 1000000)的路径的最小边数. 点分治,这道题目和POJ 2114很接近,2114是 ...

  5. Oracle中查询各种对象的方法小结

    --查看当前库中的所有表select * from all_tables a where a.table_name='INFOCODE_P20081'--查看表结构select * from all_ ...

  6. 2008r2 显示桌面图标

  7. sencha touch笔记(5)——DataView组件(1)

    1.DataView组件可以显示列表,图像等等的组件或者元素,特别适用于数据仓库频繁更新的情况.比如像显示新闻或者微博等等的很多相同样式的组件的列表这种一次性从后台或者数据源拿取很多数据展示的样式.比 ...

  8. Java 判断多级路径是否存在,不存在就创建

    第一种方案: /** * 是否创建目录 * @param path * @return */ public boolean isexitsPath(String path)throws Interru ...

  9. javascript每日一练(六)——事件一

    一.event对象 var oEvent = ev || event;//获取事件对象 oEvent.clientX oEvent.clientY//获取鼠标坐标 oEvent.cancelBubbl ...

  10. 我的Python成长之路---第一天---Python基础(作业2:三级菜单)---2015年12月26日(雾霾)

    作业二:三级菜单 三级菜单 可一次进入各个子菜单 思路: 这个题看似不难,难点在于三层循环的嵌套,我的思路就是通过flag的真假来控制每一层的循环的,简单来说就是就是通过给每一层循环一个单独的布尔变量 ...