Evaluation Clustering methods
There are many evaluation measures available like entropy, recall, precision, F-measure, silhouette co-efficient, purity, inverse purity for improving cluster's accuracy, efficiency and result.
1. Recall=A/(A+B), where A is the true positive, B is the false negative
Pecision = A/(A+C), where C is the false positive
F-measure=2*Precision*recall/ (precision+recall)
2. Purity, Silhouette co-efficient:

Evaluation Clustering methods的更多相关文章
- Clustering Methods: Benefits and Limitations
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION
- 各类聚类(clustering)算法初探
1. 聚类简介 0x1:聚类是什么? 聚类是一种运用广泛的探索性数据分析技术,人们对数据产生的第一直觉往往是通过对数据进行有意义的分组.很自然,首先要弄清楚聚类是什么? 直观上讲,聚类是将对象进行分组 ...
- scikit-learn(project中用的相对较多的模型介绍):2.3. Clustering(可用于特征的无监督降维)
參考:http://scikit-learn.org/stable/modules/clustering.html 在实际项目中,我们真的非常少用到那些简单的模型,比方LR.kNN.NB等.尽管经典, ...
- [数据挖掘课程笔记]无监督学习——聚类(clustering)
什么是聚类(clustering) 个人理解:聚类就是将大量无标签的记录,根据它们的特点把它们分成簇,最后结果应当是相同簇之间相似性要尽可能大,不同簇之间相似性要尽可能小. 聚类方法的分类如下图所示: ...
- PP: Deep clustering based on a mixture of autoencoders
Problem: clustering A clustering network transforms the data into another space and then selects one ...
- Deep Clustering Algorithms
Deep Clustering Algorithms 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 本文研究路线:深度自编码器(Deep Autoen ...
- PP: Learning representations for time series clustering
Problem: time series clustering TSC - unsupervised learning/ category information is not available. ...
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
- 论文解读(DFCN)《Deep Fusion Clustering Network》
Paper information Titile:Deep Fusion Clustering Network Authors:Wenxuan Tu, Sihang Zhou, Xinwang Liu ...
随机推荐
- python画图—黑板客老师课程学习
1.介绍 把每个图都看作一个对象,图中的每一个部分也是对象.——所有的一切都是对象. 工具——ipython notebook 是python里边用的最多的2D&3D的会图库,开源免费库,使用 ...
- sqlserver创建,调用 带返回值存取过程
<1>create: ALTER proc [dbo].[common_proc] @sql1 varchar(5000), @sql2 varchar(5000) OUTPUT as ...
- Device nodes and device stacks
[Device nodes and device stacks] 链接:https://msdn.microsoft.com/en-us/library/windows/hardware/ff5547 ...
- R作图
R一般的散点图:plot() 折线图:plot() lines() 柱状图 barplot() 箱子图 boxplot() 直方图:hist() 热力图:heatmap 画地图的:拓展包 m ...
- Git使用心得
1.git是分布式的版本控制(有本地仓库)git 先对安全 2.git基于元数据 svn是基于目录的 3.本地的提交分为三个步骤(提交本地仓库先提交暂存区再提交本地仓库) 工作区 ...
- hdu 1398 Square Coins (母函数)
Square Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tota ...
- Eclipse创建Maven时提示错误could not resolve archetype
今天用Eclipse创建Maven多模块项目的时候提示错误: could not resolve archetype ******release from any of the configured ...
- Oracle 左连接、右连接、全外连接、(+)号作用
分类: Oracle Oracle 外连接 (1)左外连接 (左边的表不加限制) (2)右外连接(右边的表不加限制) (3)全外连接(左右两表都不加限制) 外连接(Outer ...
- io流(详询请加qq:2085920154)
import java.io.File; import java.io.FileInputStream; import java.io.IOException; public class ioTest ...
- SQL Server已提交读快照隔离级别的设置
如果要把SQL Server数据库事务隔离级别设置为已提交读快照隔离 如果直接运行下面的语句: ALTER Database [mydbname] SET READ_COMMITTED_SNAPSHO ...