搭建Hadoop2.6.4伪分布式
准备工作
操作系统
CentOS 7
软件环境
- JDK 1.7.0_79 下载地址
- SSH,正常来说是系统自带的,若没有请自行搜索安装方法
关闭防火墙
systemctl stop firewalld.service #停止firewall
systemctl disable firewalld.service #禁止firewall开机启动
设置HostName
[root@localhost ~]# hostname localhost
安装环境
安装JDK
[root@localhost ~]# tar -xzvf jdk-7u79-linux-x64.tar.gz
配置java环境变量
[root@localhost ~]# vi /etc/profile
#添加如下配置
JAVA_HOME=/root/jdk1.7.0_79
PATH=$JAVA_HOME/bin:$PATH
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar export JAVA_HOME
export PATH
export CLASSPATH
验证java
[root@localhost ~]# java -version
java version "1.7.0_79"
Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)
待输出以上内容时说明java已安装配置成功。
安装Hadoop
安装Hadoop 2.6.4
[root@localhost ~]# tar -xzvf hadoop-2.6.4.tar.gz
配置Hadoop环境变量
[root@localhost ~]# vim /etc/profile
#添加以下配置
export HADOOP_HOME=/root/hadoop-2.6.4
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin [root@localhost ~]# vim /root/hadoop-2.6.4/etc/hadoop/hadoop-env.sh
#修改以下配置
# The only required environment variable is JAVA_HOME. All others are
# optional. When running a distributed configuration it is best to
# set JAVA_HOME in this file, so that it is correctly defined on
# remote nodes. # The java implementation to use.
export JAVA_HOME=/root/jdk1.7.0_79
验证Hadoop
[root@localhost ~]# hadoop version
Hadoop 2.6.4
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r 5082c73637530b0b7e115f9625ed7fac69f937e6
Compiled by jenkins on 2016-02-12T09:45Z
Compiled with protoc 2.5.0
From source with checksum 8dee2286ecdbbbc930a6c87b65cbc010
This command was run using /root/hadoop-2.6.4/share/hadoop/common/hadoop-common-2.6.4.jar
修改Hadoop配置文件
配置文件均存放在/root/hadoop-2.6.4/etc/hadoop
<!-- core-site.xml-->
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration> <!-- hdfs-site.xml -->
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration> <!-- mapred-site.xml -->
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration> <!-- yarn-site.xml -->
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
SSH免密码登陆
[root@localhost ~]# ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
[root@localhost ~]# cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
输入以下命令,如果不要求输入密码则表示配置成功:
[root@localhost ~]# ssh localhost
Last login: Fri May 6 05:17:32 2016 from 192.168.154.1
执行Hadoop
格式化hdfs
[root@localhost ~]# hdfs namenode -format
启动NameNode,DataNode和YARN
[root@localhost ~]# start-dfs.sh
Starting namenodes on [localhost]
localhost: starting namenode, logging to /root/hadoop-2.6.4/logs/hadoop-root-namenode-localhost.out
localhost: starting datanode, logging to /root/hadoop-2.6.4/logs/hadoop-root-datanode-localhost.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /root/hadoop-2.6.4/logs/hadoop-root-secondarynamenode-localhost.out [root@localhost ~]# start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /root/hadoop-2.6.4/logs/yarn-root-resourcemanager-localhost.out
localhost: starting nodemanager, logging to /root/hadoop-2.6.4/logs/yarn-root-nodemanager-localhost.out
向hdfs上传测试文件
首先在/root/test中建立test1.txt和test2.txt,分别输入“hello world”和“hello hadoop”并保存。
使用如下命令将文件上传至hdfs的input目录中:
[root@localhost ~]# hadoop fs -put /root/test/ input
[root@localhost ~]# hadoop fs -ls input
Found 2 items
-rw-r--r-- 1 root supergroup 12 2016-05-06 06:35 input/test1.txt
-rw-r--r-- 1 root supergroup 13 2016-05-06 06:35 input/test2.txt
执行wordcount demo
输入以下命令并等待执行结果:
[root@localhost ~]# hadoop jar /root/hadoop-2.6.4/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.4.jar wordcount input output
16/05/06 06:44:15 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
16/05/06 06:44:16 INFO input.FileInputFormat: Total input paths to process : 2
16/05/06 06:44:17 INFO mapreduce.JobSubmitter: number of splits:2
16/05/06 06:44:17 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1462530786445_0001
16/05/06 06:44:18 INFO impl.YarnClientImpl: Submitted application application_1462530786445_0001
16/05/06 06:44:18 INFO mapreduce.Job: The url to track the job: http://server1:8088/proxy/application_1462530786445_0001/
16/05/06 06:44:18 INFO mapreduce.Job: Running job: job_1462530786445_0001
16/05/06 06:44:33 INFO mapreduce.Job: Job job_1462530786445_0001 running in uber mode : false
16/05/06 06:44:33 INFO mapreduce.Job: map 0% reduce 0%
16/05/06 06:44:52 INFO mapreduce.Job: map 50% reduce 0%
16/05/06 06:44:53 INFO mapreduce.Job: map 100% reduce 0%
16/05/06 06:45:03 INFO mapreduce.Job: map 100% reduce 100%
16/05/06 06:45:03 INFO mapreduce.Job: Job job_1462530786445_0001 completed successfully
16/05/06 06:45:04 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=55
FILE: Number of bytes written=320242
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=249
HDFS: Number of bytes written=25
HDFS: Number of read operations=9
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=34487
Total time spent by all reduces in occupied slots (ms)=7744
Total time spent by all map tasks (ms)=34487
Total time spent by all reduce tasks (ms)=7744
Total vcore-milliseconds taken by all map tasks=34487
Total vcore-milliseconds taken by all reduce tasks=7744
Total megabyte-milliseconds taken by all map tasks=35314688
Total megabyte-milliseconds taken by all reduce tasks=7929856
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=41
Map output materialized bytes=61
Input split bytes=224
Combine input records=4
Combine output records=4
Reduce input groups=3
Reduce shuffle bytes=61
Reduce input records=4
Reduce output records=3
Spilled Records=8
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=364
CPU time spent (ms)=3990
Physical memory (bytes) snapshot=515538944
Virtual memory (bytes) snapshot=2588155904
Total committed heap usage (bytes)=296755200
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=25
File Output Format Counters
Bytes Written=25
查看执行结果
[root@localhost ~]# hadoop fs -ls output
Found 2 items
-rw-r--r-- 1 root supergroup 0 2016-05-06 06:45 output/_SUCCESS
-rw-r--r-- 1 root supergroup 25 2016-05-06 06:45 output/part-r-00000
[root@localhost ~]# hadoop fs -cat output/part-r-00000
hadoop 1
hello 2
world 1
至此,Pseudo-Distributed就已经完成了。
原创文章,转载请注明: 转载自xdlysk的博客
本文链接地址: 搭建Hadoop伪分布式[http://www.xdlysk.com/article/572c956642c817300e0f7ab1]
搭建Hadoop2.6.4伪分布式的更多相关文章
- 在Win7虚拟机下搭建Hadoop2.6.0伪分布式环境
近几年大数据越来越火热.由于工作需要以及个人兴趣,最近开始学习大数据相关技术.学习过程中的一些经验教训希望能通过博文沉淀下来,与网友分享讨论,作为个人备忘. 第一篇,在win7虚拟机下搭建hadoop ...
- CentOS5.4 搭建Hadoop2.5.2伪分布式环境
简介: Hadoop是处理大数据的主要工具,其核心部分是HDFS.MapReduce.为了学习的方便,我在虚拟机上搭建了一个伪分布式环境,来进行开发学习. 一.安装前准备: 1)linux服务器:Vm ...
- Docker中搭建Hadoop-2.6单机伪分布式集群
1 获取一个简单的Docker系统镜像,并建立一个容器. 1.1 这里我选择下载CentOS镜像 docker pull centos 1.2 通过docker tag命令将下载的CentOS镜像名称 ...
- ubuntu14.04搭建Hadoop2.9.0伪分布式环境
本文主要参考 给力星的博文——Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0/Ubuntu14.04 一些准备工作的基本步骤和步骤具体说明本文不再列出,文章中提到的“见参考”均指以上 ...
- Dockerfile完成Hadoop2.6的伪分布式搭建
在 <Docker中搭建Hadoop-2.6单机伪分布式集群>中在容器中操作来搭建伪分布式的Hadoop集群,这一节中将主要通过Dokcerfile 来完成这项工作. 1 获取一个简单的D ...
- Hadoop2.5.0伪分布式环境搭建
本章主要介绍下在Linux系统下的Hadoop2.5.0伪分布式环境搭建步骤.首先要搭建Hadoop伪分布式环境,需要完成一些前置依赖工作,包括创建用户.安装JDK.关闭防火墙等. 一.创建hadoo ...
- 琐碎-hadoop2.2.0伪分布式和完全分布式安装(centos6.4)
环境是centos6.4-32,hadoop2.2.0 伪分布式文档:http://pan.baidu.com/s/1kTrAcWB 完全分布式文档:http://pan.baidu.com/s/1s ...
- 32位Ubuntu12.04搭建Hadoop2.5.1完全分布式环境
准备工作 1.准备安装环境: 4台PC,均安装32位Ubuntu12.04操作系统,统一用户名和密码 交换机1台 网线5根,4根分别用于PC与交换机相连,1根网线连接交换机和实验室网口 2.使用ifc ...
- 摘要: CentOS 6.5搭建Redis3.2.8伪分布式集群
from https://my.oschina.net/ososchina/blog/856678 摘要: CentOS 6.5搭建Redis3.2.8伪分布式集群 前言 最近在服务器上搭建了 ...
随机推荐
- 封装好的AFN网络请求框架和MBProgress
demo:https://github.com/IMCCP/CCPAFNNetworking(收藏下来)
- windows10 下访问 virtualbox 虚拟机的linux15.10/16.04 系统 及 用 putty 访问虚拟机的配置
参考: http://www.doc88.com/p-915707596190.html --- 安装samba http://my.oschina.net/u/2260265/blog/405598 ...
- JavaScript使用技巧(1)——JS常用的函数
1.字符串对象函数和属性 函数: charAt():返回在指定位置的字符. charCodeAt():返回在指定的位置的字符的 Unicode 编码. concat():连接字符串. indexOf( ...
- SQL的多表连接查询
SQL的多表连接查询 多表连接查询具有两种规范,SQL92和SQL99规范. SQL92规范支持下列多表连接查询: (1)等值连接: (2)非等值连接: (3)外连接: (4)广义笛卡尔积: SQL9 ...
- Web String path问题
request.getContextPath()"下方出现了红色的波浪线,提示的错误信息是 "The method getContextPath() from the type H ...
- JavaScript对象的chapterI
对象: 对象就是由一些彼此相关的属性和方法集合在一起而构成的一个数据实体. 一.本地对象: 1.Date——日期对象 var myDate = new Date(); myDate.getFullYe ...
- mysql服务器和配置优化
一.存储引擎 mysql中有多种存储引擎,一般常见的有三种: MyIsam InnoDB Memory 用途 快读 完整的事务支持 内存数据 锁 全表锁定 多种隔离级别的行锁 全表锁定 持久性 基 ...
- LINUX下编译源码时所需提前安装的常用依赖包列表
yum -y install gcc gcc-c++ autoconf libjpeg libjpeg-devel libpng libpng-devel freetype freetype-deve ...
- c#_1:后台post请求
1:aspx内容 <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Push.as ...
- CentOS6.5 根目录结构划分
/bin 系统的执行程序文件/dev 硬件设备的文件目录/home 用户的家目录/lib 系统库文件目录/mnt 挂载目录,外设的挂载/media 经常用于媒体文件 ...