这场CF怎么这么多构造题……

题目链接:CF原网 洛谷

题目大意:给定两个长度为 $n$ 的序列 $c$ 和 $t$。每次我们可以对 $c_i(2\le i<n)$ 进行一次操作,也就是把 $c_i$ 变成 $c_i'=c_{i-1}+c_{i+1}-c_i$。问 $c$ 能否在若干次操作后变成 $t$。

$1\le n\le 10^5,1\le c_i,t_i\le 2\times 10^9$。


很容易考虑差分。我们设 $d_i=c_i-c_{i-1},s_i=t_i-t_{i-1}(2\le i\le n)$。

那么对 $c_i$ 进行一次操作后,

$d_i$ 会变成 $d_i'=c_i'-c_{i-1}=c_{i-1}+c_{i+1}-c_i-c_{i+1}=c_{i+1}-c_i=d_{i+1}$,

$d_{i+1}$ 会变成 $d_{i+1}'=c_{i+1}-c_i'=c_{i+1}-(c_{i-1}+c_{i+1}-c_i)=c_i-c_{i-1}=d_i$。

实际上就是把 $d_i$ 和 $d_{i+1}$ 换了个位置。

很明显,仅仅通过交换相邻元素,就可以把原序列变成任意一种原元素的排列。

而两个序列完全相同,当且仅当它们的第一个元素相同且差分序列完全相同。

所以只需判断 $c_1=t_1$ 且 $d$ 和 $s$ 能通过重排变得完全一样即可。

后半部分如何判断?排个序后看看是否完全一样即可。

时间复杂度 $O(n\log n)$。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,c[maxn],t[maxn],d1[maxn],d2[maxn];
int main(){
n=read();
FOR(i,,n) c[i]=read();
FOR(i,,n) t[i]=read();
if(c[]!=t[]) return puts("No"),; //先判首项相等
bool flag=true;
FOR(i,,n) d1[i]=c[i]-c[i-],d2[i]=t[i]-t[i-]; //两个差分序列
sort(d1+,d1+n+);sort(d2+,d2+n+); //排序
FOR(i,,n) if(d1[i]!=d2[i]){flag=false;break;} //比较
puts(flag?"Yes":"No");
}

CF1110E Magic Stones(构造题)的更多相关文章

  1. CF1110E Magic Stones 差分

    传送门 将原数组差分一下,设\(d_i = c_{i+1} - c_i\) 考虑在\(i\)位置的一次操作会如何影响差分数组 \(d_{i+1}' = c_{i+1} - (c_{i+1} + c_{ ...

  2. [CF1110E]Magic Stones

    题目大意:有一个长度为$n(n\leqslant10^5)$的数列$c$,问是否可以经过若干次变换变成数列$t$,一次变换为$c'_i=c_{i+1}+c_{i-1}-c_i$ 题解:思考一次变换的本 ...

  3. 【CF1110E】 Magic Stones - 差分

    题面 Grigory has n n magic stones, conveniently numbered from \(1\) to \(n\). The charge of the \(i\)- ...

  4. E. Magic Stones CF 思维题

    E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  5. cf251.2.C (构造题的技巧)

    C. Devu and Partitioning of the Array time limit per test 1 second memory limit per test 256 megabyt ...

  6. hdu4671 Backup Plan ——构造题

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4671 其实是不难的那种构造题,先排第一列,第二列从后往前选. #include <iostrea ...

  7. Educational Codeforces Round 7 D. Optimal Number Permutation 构造题

    D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...

  8. Codeforces 482 - Diverse Permutation 构造题

    这是一道蛮基础的构造题. - k         +(k - 1)      -(k - 2) 1 + k ,    1 ,         k ,             2,    ....... ...

  9. BZOJ 3097: Hash Killer I【构造题,思维题】

    3097: Hash Killer I Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 963  Solved: 36 ...

随机推荐

  1. 牛客练习赛44 B题 (思维)

    链接:https://ac.nowcoder.com/acm/contest/634/B 来源:牛客网 给出n条线段,第i条线段的长度为ai, 每次可以从第i条线段的j位置跳到第i + 1条线段的j+ ...

  2. 5、Docker网络配置(单机)

    一.概述 以下内容参考:https://docs.docker.com/network/#network-drivers Docker容器和服务如此强大的原因之一是您可以将它们连接在一起,或者将它们连 ...

  3. Vue重载组件....

    v-if配合Vue.nextTick()销毁当前组件后,重新加载...

  4. JQ_开发经验

    1. 把你的代码全部放在闭包里面 这是我用的最多的一条.但是有时候在闭包外面的方法会不能调用.不过你的插件的代码只为你自己的插件服务,所以不存在这个问题,你可以把所有的代码都放在闭包里面.而方法可能应 ...

  5. pyinstaller将python编写的打卡程序打包成exe

    编写了一个简易的定时提醒下班打卡程序,python代码如下: #coding:utf-8 import time import datetime from tkMessageBox import * ...

  6. 微软职位内部推荐-Senior BSP Engineer

    微软近期Open的职位: The position of Sr. BSP engineer requires experience and good knowledge in mobile hardw ...

  7. PHP Lavavel 使用控制器 传递变量 以及调用 视图模板

    控制器第一次入门使用 位置: 在app/Http/Controllers 目录下创建文件名格式:例如 UserController路由调用格式:Route::get('user/tom','UserC ...

  8. maven util 类 添加 service

    直接关键代码: public class DictionaryUtil { // 以下的处理,是为了在工具类中自动注入service // 前提是在applicationContext.xml中,将该 ...

  9. Hadoop 4 MapReduce

    对单词个数统计的MapReduce的案例 Mapper类: package main.java.worldClient; import java.io.IOException; import org. ...

  10. react-router JS 控制路由跳转(转载)

    Link组件用于正常的用户点击跳转,但是有时还需要表单跳转.点击按钮跳转等操作.这些情况怎么跟React Router对接呢? 下面是一个表单. <form onSubmit={this.han ...