这场CF怎么这么多构造题……

题目链接:CF原网 洛谷

题目大意:给定两个长度为 $n$ 的序列 $c$ 和 $t$。每次我们可以对 $c_i(2\le i<n)$ 进行一次操作,也就是把 $c_i$ 变成 $c_i'=c_{i-1}+c_{i+1}-c_i$。问 $c$ 能否在若干次操作后变成 $t$。

$1\le n\le 10^5,1\le c_i,t_i\le 2\times 10^9$。


很容易考虑差分。我们设 $d_i=c_i-c_{i-1},s_i=t_i-t_{i-1}(2\le i\le n)$。

那么对 $c_i$ 进行一次操作后,

$d_i$ 会变成 $d_i'=c_i'-c_{i-1}=c_{i-1}+c_{i+1}-c_i-c_{i+1}=c_{i+1}-c_i=d_{i+1}$,

$d_{i+1}$ 会变成 $d_{i+1}'=c_{i+1}-c_i'=c_{i+1}-(c_{i-1}+c_{i+1}-c_i)=c_i-c_{i-1}=d_i$。

实际上就是把 $d_i$ 和 $d_{i+1}$ 换了个位置。

很明显,仅仅通过交换相邻元素,就可以把原序列变成任意一种原元素的排列。

而两个序列完全相同,当且仅当它们的第一个元素相同且差分序列完全相同。

所以只需判断 $c_1=t_1$ 且 $d$ 和 $s$ 能通过重排变得完全一样即可。

后半部分如何判断?排个序后看看是否完全一样即可。

时间复杂度 $O(n\log n)$。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,c[maxn],t[maxn],d1[maxn],d2[maxn];
int main(){
n=read();
FOR(i,,n) c[i]=read();
FOR(i,,n) t[i]=read();
if(c[]!=t[]) return puts("No"),; //先判首项相等
bool flag=true;
FOR(i,,n) d1[i]=c[i]-c[i-],d2[i]=t[i]-t[i-]; //两个差分序列
sort(d1+,d1+n+);sort(d2+,d2+n+); //排序
FOR(i,,n) if(d1[i]!=d2[i]){flag=false;break;} //比较
puts(flag?"Yes":"No");
}

CF1110E Magic Stones(构造题)的更多相关文章

  1. CF1110E Magic Stones 差分

    传送门 将原数组差分一下,设\(d_i = c_{i+1} - c_i\) 考虑在\(i\)位置的一次操作会如何影响差分数组 \(d_{i+1}' = c_{i+1} - (c_{i+1} + c_{ ...

  2. [CF1110E]Magic Stones

    题目大意:有一个长度为$n(n\leqslant10^5)$的数列$c$,问是否可以经过若干次变换变成数列$t$,一次变换为$c'_i=c_{i+1}+c_{i-1}-c_i$ 题解:思考一次变换的本 ...

  3. 【CF1110E】 Magic Stones - 差分

    题面 Grigory has n n magic stones, conveniently numbered from \(1\) to \(n\). The charge of the \(i\)- ...

  4. E. Magic Stones CF 思维题

    E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  5. cf251.2.C (构造题的技巧)

    C. Devu and Partitioning of the Array time limit per test 1 second memory limit per test 256 megabyt ...

  6. hdu4671 Backup Plan ——构造题

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4671 其实是不难的那种构造题,先排第一列,第二列从后往前选. #include <iostrea ...

  7. Educational Codeforces Round 7 D. Optimal Number Permutation 构造题

    D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...

  8. Codeforces 482 - Diverse Permutation 构造题

    这是一道蛮基础的构造题. - k         +(k - 1)      -(k - 2) 1 + k ,    1 ,         k ,             2,    ....... ...

  9. BZOJ 3097: Hash Killer I【构造题,思维题】

    3097: Hash Killer I Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 963  Solved: 36 ...

随机推荐

  1. redis系列--你真的入门了吗?redis4.0入门~

    前言 redis作为nosql家族中非常热门的一员,也是被大型互联网公司所青睐,无论你是开发.测试或者运维,学习掌握它总会为你的职业生涯增色添彩. 当然,你或多或少已经了解redis,但是你是否了解其 ...

  2. 基于TLS证书手动部署kubernetes集群(下)

    一.master节点组件部署 承接上篇文章--基于TLS证书手动部署kubernetes集群(上),我们已经部署好了etcd集群.flannel网络以及每个节点的docker,接下来部署master节 ...

  3. 20155302《网络对抗》Exp3 免杀原理与实践

    20155302<网络对抗>Exp3 免杀原理与实践 实验要求 1.正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己利用shellcode编 ...

  4. 20155313 杨瀚 《网络对抗技术》实验八 Web基础

    20155313 杨瀚 <网络对抗技术>实验八 Web基础 一.实验目的 1.Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含 ...

  5. python 相对路径导入 与 绝对路径导入

    我的理解: 假设有一个文件夹 app 若 app 下有app/__init__.py文件,则此 app 被视作一个 package,而 app 下的其他文件/文件夹被视作 module 我们知道,pa ...

  6. libgdx学习记录15——音乐Music播放

    背景音乐是游戏中必备的元素,好的背景音乐能为游戏加分不少,使人更容易融入到游戏的氛围中去. Music类中主要有以下函数: play()播放 stop()停止 pause()暂停 setVolume( ...

  7. Merge:解析on子句和when not match子句的陷阱

    在细节上,体现编程的修养.每一位大师,master,其基础必定夯实.废话不多说,直接上干货,Merge子句用于对两个数据表执行数据同步,On子句指定匹配(when matched)条件,When子句指 ...

  8. 【2017年9月10日更新】ABP配套代码生成器(ABP Code Generator)帮助文档,实现快速开发

    ABP代码生成器介绍 ABP Code Generator 针对abp这个框架做了一个代码生成器,功能强大.分为两大功能点,一个是数据层,一个是视图层. 数据服务层:通过它,可以实现表设计.领域层初始 ...

  9. python3 subprocess模块

    当我们在执行python程序的时候想要执行系统shell可以使用subprocess,这时可以新起一个进程来执行系统的shell命令,python3常用的有subprocess.run()和subpr ...

  10. github添加ssh连接用户

    最近打算用flask写一个自己的博客网站,打算把代码放在GitHub上,使用ssh访问.记录下GitHub配置ssh用户的流程. 1.在本地电脑或云服务器上生成ssh公钥和私钥,window下可以进入 ...