BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版
Time Limit: 80 Sec Memory Limit: 512 MB
Submit: 1067 Solved: 494
[Submit][Status][Discuss]
Description

Input
Output
Sample Input
3 3
Sample Output
HINT
1<=N,M,K<=5000000,1<=T<=2000
Source
析:首先能看出来是莫比乌斯反演,直接求是单次O(n*sqrt(n)),肯定会TLE,然后进行两次分块,单次时间复杂度是O(n),这样我本以为就能过了,结果还是TLE,实在是没想到好办法,就看了题解,题解是再进行化简,只要一次分块就好,其他的都进行预处理,单次询问复杂度是O(sqrt(n))。盗用一张图。

最后这个F函数是一个积性函数,可以用递推和筛法来求。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 5e6 + 5;
const int maxm = 3e5 + 10;
const LL mod = 1e9 + 7LL;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} LL fast_pow(LL a, int n){
LL res = 1;
while(n){
if(n&1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
} LL f[maxn];
int prime[maxn];
bool vis[maxn]; void Moblus(int k){
int tot = 0;
f[1] = 1;
for(int i = 2; i < maxn; ++i){
if(!vis[i]) prime[tot++] = i, f[i] = fast_pow(i, k) - 1;
for(int j = 0; j < tot && i * prime[j] < maxn; ++j){
int t = i * prime[j];
vis[t] = 1;
if(i % prime[j] == 0){
f[t] = f[i] * fast_pow(prime[j], k) % mod;
break;
}
f[t] = f[i] * f[prime[j]] % mod;
}
}
for(int i = 2; i < maxn; ++i) f[i] = (f[i-1] + f[i]) % mod;
} int main(){
int T, k; scanf("%d %d", &T, &k);
Moblus(k);
while(T--){
scanf("%d %d", &n, &m);
int mmin = min(n, m);
LL ans = 0;
for(int i = 1, det = 1; i <= mmin; i = det + 1){
det = min(n/(n/i), m/(m/i));
ans = (ans + (f[det] - f[i-1]) * (n/i) % mod * (m/i)) % mod;
}
printf("%lld\n", (ans+mod)%mod);
}
return 0;
}
BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)的更多相关文章
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数
Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...
- bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1184 Solved: 535[Submit][Status][Discuss] D ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...
- ●BZOJ 4407 于神之怒加强版
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
随机推荐
- vm参数配置的理解
-denv=dev表示将服务器的级别 设置为开发环境 所有错误的内容都会打印在控制台上 //The-Denv = dev statement creates a system property nam ...
- C#中泛型的解释(object,list,var,dynamic的区别)
泛型是 2.0 版 C# 语言和公共语言运行库 (CLR) 中的一个新功能.泛型将类型参数的概念引入 .NET Framework,类型参数使得设计如下类和方法成为可能:这些类和方法将一个或多个类型的 ...
- Excel怎么下拉框多选
打开Exlce, 确定,然后 右击查看代码,把这段代码复制到新建的文件里面 此时Excel会给出提示,选择否,,系统会提示保存,在保存的时候选择启用宏的工作簿然后保存,此时Excel下拉框多选就搞定了 ...
- Http方式下载文件
代码: using System; using System.Collections.Generic; using System.IO; using System.Linq; using System ...
- [z]Linux下压缩与解压
1.压缩命令: 命令格式:tar -zcvf 压缩文件名.tar.gz 被压缩文件名 可先切换到当前目录下.压缩文件名和被压缩文件名都可加入路径. 2.解压缩命令: 命令格式:tar -z ...
- jquery分页插件精选
1.最新的分页控件:Mricode.Pagination(推荐) https://github.com/mricle/Mricode.Pagination 2.Jquery Pagination Pl ...
- python 常库介绍及安装方法
bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheetahcherrypy:一个WEB frameworkctypes:用来调用动态链接库DBUtils:数 ...
- Jmeter常用脚本开发之SOAP/XML-RPC Request
SOAP(Simple Object Access Protocol )简单对象访问协议是在分散或分布式的环境中交换信息的简单的协议,是一个基于XML的协议: SOAP/XML-RPC Request ...
- Linux执行命令时遇到的些问题
1.执行lsb_release -a,提示 未安装lsb_release导致的,执行一下yum install redhat-lsb -y,问题解决 2.配置tomcat站点后重启tomcat,提示找 ...
- php伪静态与重定向
什么是伪静态 伪静态是相对于真静态来讲的,伪静态只是改变了URL格式,实际还是动态页面,有真静态一样的SEO,真静态访问一个静态页面,服务器(apache,nginx)直接读取磁盘静态文件,伪静态是动 ...