题目链接

题目描述

设r是个2^k 进制数,并满足以下条件:

(1)r至少是个2位的2^k 进制数。

(2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。

(3)将r转换为2进制数q后,则q的总位数不超过w。

在这里,正整数k(1≤k≤9)和w(k〈w≤30000)是事先给定的。

问:满足上述条件的不同的r共有多少个?

我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2k 进制数r。

例:设k=3,w=7。则r是个八进制数(2^3=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:

2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。

3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。

所以,满足要求的r共有36个。

输入

只有1行,为两个正整数,用一个空格隔开: k w

输出

1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。

(提示:作为结果的正整数可能很大,但不会超过200位)

样例输入

3 7

样例输出

36

分析:

这是一个组合数学问题,

注意这句话:作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。

其实这是在暗示组合数,

显然r中的不会有相同的位,如果每一位都不同,显然只有严格递增的排列是合法的,这便是组合,

将 r 转化成这种形式(设k为3) 000 000 000 000

显然除首位外每一位的取值范围为 000 to 111(2^k-1)

在首位为0的情况下,最多可取 w/k 位,且题目要求大于2位,

则在首位为0的合法解有 ∑ C(2^k-1,i)(2<=i<=w/k) ,

Ps. 如果 w 模 k 等于 0 仅考虑上述情况即可。

考虑首位不为0的情况,显然首位不为0的话,r 就有 w/k+1 位,

除首位外还有w/k位,可以枚举首位的取值范围为 1 to 2^(w mod k)-1

设首位取值为 val,则剩下 w/k 位 取值范围为 val+1 to 2^k-1,也就是有 2^k-1-val 个数可取,所以首位不为0的合法解有 ∑ C(2k-1-val,w/k)(1<=val<=2(w mod k)-1)

所以上述两者相加便是正解(需要高精运算)

对于高精运算的处理,我看到了一个比较巧妙的方法避开了复杂的数组运算,就是把上面那些组合数的运算

都转换成了 C(2^k-1,i) -----> C(2^k-i,i) 然后写C函数的时候不是计算C(2k-1,i),而是计算C(2k-i+i-1,i)。 巧妙之处就在这里,这样可以有效的避免有溢出吧。

注意事项:

1、本题的关键就是看懂题目,知道这是个排列组合问题。

2、在排列组合的计算时,用了一个巧妙的方法,希望能看懂。

代码:

#include <iostream>
#include <cmath>
#include<stdio.h>
using namespace std;
long C(int n,int m) //公式为C(n+m-1)(m)[重点] 希望结合上面说的看懂
{
int i;
long sum=1;
for (i=1;i<=m;i++)
sum*=(n+m-i);
for (i=1;i<=m;i++)
sum=sum/i;
return sum;
}
int main()
{
int k, w;
cin >> k >> w;
int part_num = w / k + 1; //一共分为几段
int maxx_num_per_part = pow(2.0,k); //取不到,每部分最大取到maxx_num_per_part减去1,就是每一位都是1的时候
int gaow_num_max = pow(2.0,w%k) - 1; //最高位的数最大值,可以是0
//开始计算,分两种情况,第一种,首段为0,那么后面n位数对应的个数符合C[maxx_num_per_part-1][n]
long long sum = 0;
for (int i=2; i<=part_num-1; i++) //去掉最高位部分,还有至少两位数
{
sum += C(maxx_num_per_part-i, i);
}
//第二种情况,首段不是0,如果首段为x,解就有C[maxx_num_per_part-1-x][w/k]
for (int i=1; i<=gaow_num_max; i++)
{
sum += C(maxx_num_per_part-w/k-i,w/k);
}
cout << sum;
return 0;
}

蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)的更多相关文章

  1. [蓝桥杯]ALGO-16.算法训练_进制转换

    问题描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 1*102+2*101+3*100这样 ...

  2. Java实现 蓝桥杯VIP 算法训练 -2进制(暴力)

    试题 算法训练 -2进制 问题描述 给出1个十进制整数N,计算出它的-2进制表示. 输入格式 第一行:一个整数N,表示要转换的十进制数. 输出格式 第一行:N的-2进制表示. 样例输入 -13 样例输 ...

  3. Java实现 蓝桥杯VIP 算法训练 ALGO-16进制转换

    算法训练 进制转换 时间限制:1.0s 内存限制:256.0MB 问题描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的 ...

  4. Java实现 蓝桥杯VIP 算法训练 ALGO-85进制转换

    问题描述 编写一个程序,输入一个二进制的字符串(长度不超过32),然后计算出相应的十进制整数,并把它打印出来. 输入格式:输入为一个字符串,每个字符都是'0'或'1',字符串的长度不超过32. 输出格 ...

  5. k进制正整数的对k-1取余与按位取余

    华电北风吹 天津大学认知计算与应用重点实验室 日期:2015/8/24 先说一下结论 有k进制数abcd,有abcd%(k−1)=(a+b+c+d)%(k−1) 这是由于kn=((k−1)+1)n=∑ ...

  6. [转]as3 算法实例【输出1 到最大的N 位数 题目:输入数字n,按顺序输出从1 最大的n 位10 进制数。比如输入3,则输出1、2、3 一直到最大的3 位数即999。】

    思路:如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从0到9的全排列.也就是说,我们把数字的每一位都从0到9排列一遍,就得到了所有的10进制数. /** *ch 存放数字 *n n ...

  7. 1813. M进制数问题

    1813. M进制数问题 Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description 试用 C++的类来表示一般进制数. 给定 2 ...

  8. CF459C Pashmak and Buses (构造d位k进制数

    C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 seco ...

  9. [codevs1157]2^k进制数

    [codevs1157]2k进制数 试题描述 设r是个2k 进制数,并满足以下条件: (1)r至少是个2位的2k 进制数. (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ...

随机推荐

  1. Celery基本使用

    Celery 什么是Celery? Celery是一种简单/高效/灵活的即插即用的分布式任务队列. Celery应用场景? 需要异步处理的任务,发邮件/发短信/上传等耗时的操作.最终到达提升用户体验的 ...

  2. 微软职位内部推荐-Principal Software Eng Mgr

    微软近期Open的职位: Job Title: &nbsp Principal Software Eng Mgr Work Location: Shanghai, China Job Desc ...

  3. Notes of Daily Scrum Meeting(12.17)

    我们会尽量安排好时间,在其他作业不受影响的情况下加快项目的进度,在Deadline之前完成Beta阶段的工作. 今天的团队工作总结如下: 团队成员 今日团队工作 陈少杰 调试网络连接,补充后端代码 王 ...

  4. 【Alpha】第一次Scrum Meeting

    本次会议内容概括如下: 总结了一周以来大家任务的完成情况,对消耗时间进行统计,并评估了各自对团队的贡献(影响)程度 整理并融合所有人的工作的结果生成了相应的总结性文档 进一步明确了团队中各个成员的定位 ...

  5. Linux第一章第二章学习笔记

    第一章 Linux内核简介 1.1 Unix的历史 它是现存操作系统中最强大最优秀的系统. 设计简洁,在发布时提供原代码. 所有东西都被当做文件对待. Unix的内核和其他相关软件是用C语言编写而成的 ...

  6. LINUX内核分析第一周学习总结——计算机是如何工作的

    LINUX内核分析第一周学习总结——计算机是如何工作的 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/ ...

  7. 如何区别英语前缀pri,pro,per,pre?

    pri- 前缀pri-来源于拉丁语的这几个形容词“prim.us”, “prim.a”, “prim.um”,表示“第一的”的意思,和“pri.or”, “pri.or”, “pri.us”,是“优先 ...

  8. scheme 教程 #lang racket

    scheme 教程 #lang racket 来源  https://blog.csdn.net/yemeishenme/article/details/51471037 原文: https://le ...

  9. 【洛谷P1509】找GF

    题目大意:给定 N 个物品,每个物品有两个维度的费用,有两个维度的价值,求在有一定费用基础的前提下,满足其中一个维度的价值最大化的前提下,第二个维度的价值最小是多少. 题解:由于是两个维度的价值,因此 ...

  10. php session 登录退出验证

    login.html 负责收集用户填写的登录信息 <html><head><title></title></head><body> ...