BZOJ.2595.[WC2008]游览计划(DP 斯坦纳树)
f[i][s]表示以i为根节点,当前关键点的连通状态为s(每个点是否已与i连通)时的最优解。i是枚举得到的根节点,有了根节点就容易DP了。
那么i为根节点时,其状态s的更新为 \(f[i][s]=min\{f[i][s']+f[i][\complement_{s}s']-cost[i]\},s'\in s\)(枚举子集s'后,显然只需要s'的补集。减cost[i]是因为两种状态都包含,cost[i]算重了)
如果我们想合并入当前连通块一个新的非关键点v并以v为根,那么 \(f[v][s]=min\{f[k][s]+cost[v]\},k,v相邻\)
第一个更新可以按顺序,第二个更新没有明显顺序,但是如果固定状态s,很像SPFA,可类似转移。
输出方案,可以每次转移记录转移前的点与状态s,因为可能是转移点也可能是用子集更新。最后随便找一个关键点开始DFS即可。
复杂度 \(O(n\times 3^k+cE\times 2^k)\)
c为SPFA复杂度中的常数,E为边的数量,但几乎达不到全部边的数量,甚至非常小。\(3^k\)来自于子集的转移\(\sum_{i=1}^nC_n^i\times 2^i\),用二项式展开求一下和。
//2080kb 148ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define En(i,j) (i*m+j)//Encode
#define De(w) mp(w/m,w%m)//Decode
#define mp std::make_pair
#define pr std::pair<int,int>
const int N=102,INF=1e9,to[5]={1,0,-1,0,1};
int n,m,cost[N],f[(1<<10)+1][N];//换下了顺序 注意!
pr pre[(1<<10)+1][N];
bool inq[N],vis[N];
std::queue<int> q;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void SPFA(int *f,pr *pre,int s)
{
while(!q.empty())
{
int now=q.front();
q.pop(), inq[now]=0;
for(int x=now/m,y=now%m,xn,yn,nxt,i=0; i<4; ++i)
if((xn=x+to[i])>=0&&xn<n&&(yn=y+to[i+1])>=0&&yn<m && f[nxt=En(xn,yn)]>f[now]+cost[nxt])
{
f[nxt]=f[now]+cost[nxt], pre[nxt]=mp(now,s);
if(!inq[nxt]) inq[nxt]=1, q.push(nxt);
}
}
}
void DFS(int p,int s)
{
if(!pre[s][p].second) return;//pre.second即 无转移了
vis[p]=1;
if(pre[s][p].first==p) DFS(p,s^pre[s][p].second);
DFS(pre[s][p].first,pre[s][p].second);
}
int main()
{
n=read(), m=read(); int K=0, rt=0;
memset(f,0x3f,sizeof f);
for(int tot=0,i=0; i<n; ++i)
for(int j=0; j<m; ++j,++tot)
{
cost[tot]=read();
if(!cost[tot]) f[1<<(K++)][tot]=0, rt=tot;
}
for(int s=1; s<(1<<K); ++s)
{
for(int i=0; i<n*m; ++i)
{
for(int sub=(s-1)&s; sub; sub=(sub-1)&s)
if(f[s][i]>f[sub][i]+f[sub^s][i]-cost[i])
f[s][i]=f[sub][i]+f[sub^s][i]-cost[i], pre[s][i]=mp(i,sub);
if(f[s][i]<INF) q.push(i), inq[i]=1;//多起点,inq[]还是不能省啊
}
SPFA(f[s],pre[s],s);
}
printf("%d\n",f[(1<<K)-1][rt]);
DFS(rt,(1<<K)-1);
for(int i=0,tot=0; i<n; ++i,putchar('\n'))
for(int j=0; j<m; ++j,++tot)
if(!cost[tot]) putchar('x');
else putchar(vis[tot]?'o':'_');
return 0;
}
BZOJ.2595.[WC2008]游览计划(DP 斯坦纳树)的更多相关文章
- bzoj 2595 [Wc2008]游览计划(斯坦纳树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2595 [题意] 给定N*M的长方形,选最少权值和的格子使得要求的K个点连通. [科普] ...
- BZOJ_2595_[Wc2008]游览计划_斯坦纳树
BZOJ_2595_[Wc2008]游览计划_斯坦纳树 题意: 分析: 斯坦纳树裸题,有几个需要注意的地方 给出矩阵,不用自己建图,但枚举子集转移时会算两遍,需要减去当前点的权值 方案记录比较麻烦,两 ...
- BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】
传送门 题意:略 论文 <SPFA算法的优化及应用> http://www.cnblogs.com/lazycal/p/bzoj-2595.html 本题的核心就是求斯坦纳树: Stein ...
- BZOJ2595 Wc2008 游览计划 【斯坦纳树】【状压DP】*
BZOJ2595 Wc2008 游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个 ...
- 【BZOJ2595_洛谷4294】[WC2008]游览计划(斯坦纳树_状压DP)
上个月写的题qwq--突然想写篇博客 题目: 洛谷4294 分析: 斯坦纳树模板题. 简单来说,斯坦纳树问题就是给定一张有边权(或点权)的无向图,要求选若干条边使图中一些选定的点连通(可以经过其他点) ...
- BZOJ2595 WC2008游览计划(斯坦纳树)
斯坦纳树板子题. 考虑状压dp,设f[i][j][S]表示当前在点(i,j)考虑转移,其所在的联通块包含的关键点集(至少)为S的答案. 转移时首先枚举子集,有f[i][j][S]=min{f[i][j ...
- [WC2008]游览计划(斯坦纳树)
[Luogu4294] 题解 : 斯坦纳树 \(dp[i][j]\) 表示以\(i\)号节点为根,当前状态为\(j\)(与\(i\)连通的点为\(1\)) 当根\(i\)不改变时状态转移方程是: \( ...
- BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树
[题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...
- bzoj:2595: [Wc2008]游览计划
Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点:否则表示控制该方块至少需要的志愿者数 ...
随机推荐
- Hadoop生态圈-Flume的组件之sink处理器
Hadoop生态圈-Flume的组件之sink处理器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一. 二.
- nginx 重写URL尾部斜杠
1. 在URL结尾添加斜杠 在虚拟主机中这么添加一条改写规则: rewrite ^(.*[^/])$ $1/ permanent;或者rewrite ^([/\w-_]*[^/])$ $1/ perm ...
- JVM总结(一):概述--JVM对象探秘
这一节我们来讨论一下JVM对象建立过程. JVM对象探秘 对象的建立 对象的内存布局 对象的访问定位 JVM对象探秘 对象的建立 对象的建立过程 图一:对象建立过程 1.类加载检查. 当JVM检测 ...
- python---django中orm的使用(4)字段,参数(on_delete重点)补充,一对多,一对一,多对多
1.索引: 普通索引:加快查找速度 唯一索引:加快查找速度,唯一约束 主键索引:加快查找速度,唯一索引,不为空 class UserInfo(models.Model): username = mod ...
- 【DS】排序算法之冒泡排序(Bubble Sort)
一.算法思想 冒泡排序是排序算法中比较有意思的一种排序方法,也很简单.其算法思想如下: 1)比较相邻的元素.如果第一个比第二个大,就交换他们两个. 2)对每一对相邻元素作同样的工作,从开始第一对到结尾 ...
- POJ - 3436 ACM Computer Factory(最大流)
https://vjudge.net/problem/POJ-3436 题目描述: 正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...
- [转载]jdk环境变量配置方法
JDK下载 在安装完jdk后,还需要对jdk的环境变量进行配置才能正常使用,下面教大家如何配置jdk环境变量: 1.右键选择 计算机→属性→高级系统设置→高级→环境变量 2.系统变量→新建 变量名:J ...
- J2EE简介
一,J2EE概念: J2EE的全称为,Java2 Platform Enterprise Edition,Java或java2平台企业版,他是基于java平台或java2平台的标准版,保留并扩展了J2 ...
- 整理一下原生js的dom操作
获取元素 getElementById() getElementsByClass() getElementsByTagName getElementsByName node属性 前.后.父.子 pre ...
- Raid 磁盘阵列
raid 原理与区别 raid0至少2块硬盘.吞吐量大,性能好,同时读写,但损坏一个就完蛋 raid1至少2块硬盘.相当镜像,一个存储,一个备份.安全性比较高.但是性能比0弱 raid5至少3块硬盘. ...