CS229 6.3 Neurons Networks Gradient Checking
BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得到的结果。
有了cost function,目标是求出一组参数W,b,这里以
表示,cost function 暂且记做
。假设
,则
,即一维情况下的Gradient Descent:

根据6.2中对单个参数单个样本的求导公式:

可以得到每个参数的偏导数,对所有样本累计求和,可以得到所有训练数据对参数
的偏导数记做
,
是靠BP算法求得的,为了验证其正确性,看下图回忆导数公式:

可见有:
那么对于任意
值,我们都可以对等式左边的导数用:
来近似。
给定一个被认为能计算
的函数
,可以用下面的数值检验公式
应用时,通常把
设置为一个很小的常量,比如在
数量级,最好不要太小了,会造成数值的舍入误差。上式两端值的接近程度取决于
的具体形式。假定
的情况下,上式左右两端至少有4位有效数字是一样的(通常会更多)。
当
是一个n维向量而不是实数时,且
,在 Neorons Network 中,J(W,b)可以想象为 W,b 组合扩展而成的一个长向量
,现在又一个计算
的函数
,如何检验
能否输出到正确结果呢,用
的取值来检验,对于向量的偏导数:

根据上图,对
i 求导时,只需要在向量的第i维上进行加减操作,然后求值即可,定义
,其中

和
几乎相同,除了第
行元素增加了
,类似地,
得到的第
行减小了
,然后求导并与
比较:

中的参数对应的是参数向量中一个分量的细微变化,损失函数J 在不同情况下会有不同的值(比如三层NN 或者 三层autoencoder(需加上稀疏项)),上式中左边为BP算法的结果,右边为真正的梯度,只要两者很接近,说明BP算法是在正确工作,对于梯度下降中的参数是按照如下方式进行更新的:

即有
分别为:

最后只需总体损失函数J(W,b)的偏导数与上述
的值比较即可。
除了梯度下降外,其他的常见的优化算法:1) 自适应
的步长,2) BFGS L-BFGS,3) SGD,4) 共轭梯度算法,以后涉及到再看。
CS229 6.3 Neurons Networks Gradient Checking的更多相关文章
- (六) 6.3 Neurons Networks Gradient Checking
BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得 ...
- CS229 6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- CS229 6.16 Neurons Networks linear decoders and its implements
Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...
- CS229 6.13 Neurons Networks Implements of stack autoencoder
对于加深网络层数带来的问题,(gradient diffuse 局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy ...
- CS229 6.5 Neurons Networks Implements of Sparse Autoencoder
sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoen ...
- CS229 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...
- CS229 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- CS229 6.15 Neurons Networks Deep Belief Networks
Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习 ...
- CS229 6.12 Neurons Networks from self-taught learning to deep network
self-taught learning 在特征提取方面完全是用的无监督的方法,对于有标记的数据,可以结合有监督学习来对上述方法得到的参数进行微调,从而得到一个更加准确的参数a. 在self-taug ...
随机推荐
- c语言中如何通过二级指针来操作二维数组
通过二级指针去访问二维数组需要先给二级指针分配等同于二维数组行数的一维数组指针,然后把二维数组的每行首地址赋值给对应位置的一维指针上.之后就可以通过二维指针直接访问了. 参考代码如下,可以看具体注释辅 ...
- java 同步代码块与同步方法
同步代码块 synchronized (obj) { // 代码块 } obj 为同步监视器,以上代码的含义为:线程开始执行同步代码块(中的代码)之前,必须先获得对同步监视器的锁定. 代码块中的代码是 ...
- Mysql 通信协议抓包分析
mysql在传输层使用的TCP协议.一个TCP payload可能有多个mysql packet.如下图所示. TCP head TCP payload (mysql packet1, mysql p ...
- c# post文件
public class HttpUpload { private ArrayList bytesArray; private Encoding encoding = Encoding.UTF8; p ...
- CentOS 7.4 初次手记:第二章 CentOS安装步骤
第二章 CentOS安装步骤... 18 第一节 下载... 18 第二节 分区参考... 18 第三节 安装... 19 I Step 1:引导... 19 II Step 2:配置... 20 I ...
- 黄聪:初识Pjax:pjax是什么
听说博主不再折腾wordpress了,陌小雨还是转载到网站做个备份吧,万一哪天没有了呢.陌小雨觉得讲的挺清楚的,小白都能懂. pjax是 pushstate + ajax,分别百度可以得到相关资料,在 ...
- Java第02次实验提纲(Java基本语法与类库)
1. 熟悉Git 1.1 学会使用网页版的操作代码仓库(gitee) 申请账号,然后根据老师提供的链接或者二维码加入团队,然后修改昵称. fork老师提供的代码库项目,新建自己学号命名的文件并上传一些 ...
- Boost--lexical_cast 一个方便安全高效的string转换库
#include "boost\lexical_cast.hpp" #include <vector> #include <iostream> #inclu ...
- solrCloud 4.9 分布式集群部署及注意事项
环境搭建 一.zookeeper 参考:http://blog.chinaunix.net/uid-25135004-id-4214399.html 现有4台机器 10.14.2.201 10.14. ...
- Python:删除、增加字典的元素
一)增加一个或多个元素 d = {'a': 1} d.update(b=2) #也可以 d.update({‘b’: 2}) print(d) -->{'a': 1, 'b': 2} ...
