Good Bye 2018 没打记
场外选手赛时只口胡出了CD感觉非常惨。只看了E并且还没看到题面里的wiki我能咋办
C:f只与gcd(n,k)有关。
D:考虑每种起始位置,对于跨越的两个排列,只有前一个排列的后缀单减时不产生贡献。答案就非常显然了。注意最后+1,因为这样没考虑n~1的排列。
E:根据题面给出的定理,n+1号点度数增大时,以该点在已从大到小排序的序列里的位置为分割点,k较大时不等式更难满足,k较小时不等式更易满足,且分割点位置左移。因此每一个位置存在一个连续的合法区间,区间并即为答案,显然其也是一个连续区间。找到任意一个合法答案后二分即可。这个任意答案也可以二分得到,具体地,根据n+1号点度数所在位置及其右边位置是否合法决定二分方向。不等式显然可以树状数组优化一下检验(甚至可以线性?)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 500010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],b[N],tree_size[N],isodd,down,up;
ll tree_sum[N];
void ins(int x){for (int i=x+;i<=n+;i+=i&-i) tree_size[i]++,tree_sum[i]+=x;}
int query_size(int k){int s=;k++;while (k) s+=tree_size[k],k-=k&-k;return s;}
ll query_sum(int k){ll s=;k++;while (k) s+=tree_sum[k],k-=k&-k;return s;}
int findanyans()
{
int l=,r=(n>>)+;
while (l<=r)
{
int mid=l+r>>,k=mid<<|isodd;
if (k>n) r=mid-;
else
{
memset(tree_sum,,sizeof(tree_sum));
memset(tree_size,,sizeof(tree_size));
for (int i=;i<=n;i++) b[i]=a[i];b[n+]=;
int pos=;
for (int i=;i<=n+;i++)
if (b[i]<k)
{
for (int j=n+;j>i;j--) b[j]=b[j-];
b[i]=k;pos=i;break;
}
if (pos==) pos=n+;
ll s=;for (int i=;i<=n+;i++) s+=b[i];
bool flag=;
for (int i=n+;i>=pos;i--)
{
if (s>1ll*i*(i-)+1ll*i*((n+-i)-query_size(i))+query_sum(i)) {flag=;break;}
s-=b[i];ins(b[i]);
}
if (!flag) r=mid-;
else
{
for (int i=pos-;i>=;i--)
{
if (s>1ll*i*(i-)+1ll*i*((n+-i)-query_size(i))+query_sum(i)) {flag=;break;}
s-=b[i];ins(b[i]);
}
if (flag) return mid;else l=mid+;
}
}
}
return -;
}
bool check(int mid)
{
mid<<=,mid+=isodd;
if (mid>n) return ;
memset(tree_sum,,sizeof(tree_sum));
memset(tree_size,,sizeof(tree_size));
for (int i=;i<=n;i++) b[i]=a[i];b[n+]=;
for (int i=;i<=n+;i++)
if (b[i]<mid)
{
for (int j=n+;j>i;j--) b[j]=b[j-];
b[i]=mid;break;
}
ll s=;for (int i=;i<=n+;i++) s+=b[i];
for (int i=n+;i>=;i--)
{
if (s>1ll*i*(i-)+1ll*i*((n+-i)-query_size(i))+query_sum(i)) return ;
s-=b[i];ins(b[i]);
}
return ;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("e.in","r",stdin);
freopen("e.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
sort(a+,a+n+);reverse(a+,a+n+);
for (int i=;i<=n;i++) isodd^=a[i]&;
down=up=findanyans();
if (down==-) {cout<<-;return ;}
int l=,r=down;
while (l<=r)
{
int mid=l+r>>;
if (check(mid)) down=mid,r=mid-;
else l=mid+;
}
l=up,r=(n>>)+;
while (l<=r)
{
int mid=l+r>>;
if (check(mid)) up=mid,l=mid+;
else r=mid-;
}
for (int i=down;i<=up;i++) printf("%d ",i<<|isodd);
return ;
}
F:显然每一段都是前一部分步行/游泳,后一部分飞。同样显然的是最后把精力值用完才是最优的,于是总飞行时间也固定了。现在所要做的就是尽量使用游泳来攒精力。那么当处于游泳路段时,只要精力值不会多余就攒精力,否则直接飞到终点。处于步行路段时,只要能满足之后强制飞行路段的需求就飞,否则步行攒精力。怎么这么简单啊?然后才发现原来还有原地徘徊这种操作。不过事实上只要根据后面的需求延长路径且尽量在游泳路段延长就行了?
Good Bye 2018 没打记的更多相关文章
- Good Bye 2018 (A~F, H)
目录 Codeforces 1091 A.New Year and the Christmas Ornament B.New Year and the Treasure Geolocation C.N ...
- Good Bye 2018
Good Bye 2018 2018年最后一场CF,OVER! 弱弱的我只能做出3道A,B,D~~~~ 最后几分钟,感觉找到了C题的规律,结束的那一刻,提交了一发 "Wrong answer ...
- Codeforces Good Bye 2018
咕bye 2018,因为我这场又咕咕咕了 无谓地感慨一句:时间过得真快啊(有毒 A.New Year and the Christmas Ornament 分类讨论后等差数列求和 又在凑字数了 #in ...
- NOIP 2018 真・退役记
目录 NOIp 2018 真・退役记 7.01 7.05 \(summary\) 7.12 7.18 7.26 - 7.27 8.2 8.3 8.3 8.7 8.9 8.20 8.24 8.27 8. ...
- Codeforces:Good Bye 2018(题解)
Good Bye 2018! 题目链接:https://codeforces.com/contest/1091 A. New Year and the Christmas Ornament 题意: 给 ...
- Good Bye 2018题解
Good Bye 2018题解 题解 CF1091A [New Year and the Christmas Ornament] 打完cf都忘记写题解了qwq 题意就是:给你一些黄,蓝,红的球,满足蓝 ...
- $2019$各种$WC$没去记
\(2019\)各种\(WC\)没去记 太弱了去不了啊. 至少我联赛没退役是吧...(退役感++ 不过这个分数线还是有点让人自闭啊,划线人绝对有毒,有人关照一下空巢老人\(mona\)喵? 这里大概是 ...
- Lyft Level 5 Challenge 2018 - Final Round Div. 1没翻车记
夜晚使人着迷.没有猝死非常感动. A:显然对于水平线段,只有横坐标的左端点为1的时候才可能对答案产生影响:对于竖直直线,如果要删一定是删去一段前缀.枚举竖直直线删到哪一条,记一下需要删几条水平线段就可 ...
- 2018第一发:记一次【Advanced Installer】打包之旅
一.前言 2017年最后几天,你们都高高兴兴的跨年,博主还在加班制作.net安装包.因为年前要出来第一版的安装包,所以博主是加班加点啊.本来想用VS自带的制作工具,不过用过的人都知道,真是非常好(to ...
随机推荐
- 【webstorm】project目录树显示不出
问题原因:webstorm自动生成的配置文件 .idea/modules.xml损坏. 解决: 1.关掉webstorm: 2.删除该项目下的.idea文件夹(如果隐藏,请设置显示隐藏文件夹): 3. ...
- 【C/C++】1~20的阶乘之和
一. 前情 能点进这篇文章的,想必也已经知道了C语言和C++语言,以及阶乘的定义,所以在此不赘述了.SUM(1!~20!)这个问题是我在大一学C语言时的一个小题,最近又要把编译器装回来,所以装完之 ...
- web窗体的运用
using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace WebAp ...
- 【WPF】给TextBox添上Label
原文:[WPF]给TextBox添上Label 引言 在客户端开发中,要说出现频率大的控件,必定有TextBox的身影.然而在TextBox的旁边通常得有个基友Label,形影不离.为此,我们 ...
- angular-ui-router速学
Demo1 初始化 <html ng-app="app"> <head> <style>.active { color: red; font-w ...
- 浅析java构造函数前的访问限定符问题
曾经一直有个问题困扰着我,我一直以为构造函数前面不能加任何东西,但偶然间看到了一本书上写的代码中,构造函数前加了public限定符,心里很是疑惑,构造函数前加毛访问限定符啊??! 在网上查了很多资料 ...
- Azure SQL Database Active Geo-Replication 简介
对于数据库的维护来说,备份工作可谓是重中之重.MS Azure 当然也提供了很完善的数据库备份功能.但是在动手创建备份计划前请思考一下备份工作的真实目的.当然首先要保证数据的安全,一般来说定时创建数据 ...
- java Script复习总结
一:基础知识 1.JavaScript语言的历史 l 早期名称:livescript l 开发公司:网景公司(netscape) 2.JavaScript语言的基本特点 l 基于对象 l 事件 ...
- 关于使用单片机读取外部电压ADC阻抗匹配的问题
单片机的基准电压一般为3.3V,如果外部信号超过了AD测量范围,可以采用电阻分压的方法,但是要注意阻抗匹配问题.比如,SMT32的模数输入阻抗约为10K,如果外接的分压电阻无法远小于该阻值,则会因为信 ...
- Python对Selenium调用浏览器进行封装包括启用无头浏览器,及对应的浏览器配置文件
""" 获取浏览器 打开本地浏览器 打开远程浏览器 关闭浏览器 打开网址 最大化 最小化 标题 url 刷新 Python对Selenium封装浏览器调用 ------b ...